

PATTERNS OF SOFTWARE
CONSTRUCTION

HOW TO PREDICTABLY BUILD RESULTS

Stephen Rylander

Patterns of Software Construction: How to Predictably Build Results

ISBN-13 (pbk): 978-1-4842-7935-9 ISBN-13 (electronic): 978-1-4842-7936-6
https://doi.org/10.1007/978-1-4842-7936-6

Copyright © 2022 by Stephen Rylander

This work is subject to copyright. All rights are reserved by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use
the names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shiva Ramachandran
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, New York, NY 100043. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at https://github.com/
Apress/ Patterns-of-Software-Construction. For more detailed information, please visit
http://www.apress.com/source- code.

Printed on acid-free paper

Stephen Rylander
Glen Ellyn, IL, USA

https://doi.org/10.1007/978-1-4842-7936-6

Chapter 1: Patterns� 1

Chapter 2: Getting Started � 9

Chapter 3: Plan� 17

Chapter 4: Build � 27

Chapter 5: Test � 53

Chapter 6: Release � 77

Chapter 7: Operate � 99

Chapter 8: Manage � 121

Chapter 9: Summary � 141

 Index � 143

Contents
About the Author � v

Acknowledgments � vii

Introduction �ix

https://doi.org/10.1007/978-1-4842-7936-6_1
https://doi.org/10.1007/978-1-4842-7936-6_1
https://doi.org/10.1007/978-1-4842-7936-6_2
https://doi.org/10.1007/978-1-4842-7936-6_2
https://doi.org/10.1007/978-1-4842-7936-6_3
https://doi.org/10.1007/978-1-4842-7936-6_3
https://doi.org/10.1007/978-1-4842-7936-6_4
https://doi.org/10.1007/978-1-4842-7936-6_4
https://doi.org/10.1007/978-1-4842-7936-6_5
https://doi.org/10.1007/978-1-4842-7936-6_5
https://doi.org/10.1007/978-1-4842-7936-6_6
https://doi.org/10.1007/978-1-4842-7936-6_6
https://doi.org/10.1007/978-1-4842-7936-6_7
https://doi.org/10.1007/978-1-4842-7936-6_7
https://doi.org/10.1007/978-1-4842-7936-6_8
https://doi.org/10.1007/978-1-4842-7936-6_8
https://doi.org/10.1007/978-1-4842-7936-6_9
https://doi.org/10.1007/978-1-4842-7936-6_9

Stephen Rylander is currently SVP, Global Head of Engineering at Donnelley
Financial Solutions (DFIN). He is a software engineer–turned technical execu-
tive who has seen a variety of industries from music to ecommerce to finance
and more. He is invested in improving the practice of software delivery, oper-
ational platforms, and all the people involved in making this happen. He has
worked on platforms handling millions of daily transactions and developed
digital transformation programs driving financial platforms. He has also had
the opportunity to construct platforms with digital investing advice engines
and has a history of dealing with scale and delivering results leading local and
distributed teams.

About the Author

Acknowledgments
I am thankful to my wonderful, smart, and beautiful wife for giving me support
in writing this book. Her support in this endeavor was critical. I also give
thanks here to those who believed in me, coached me, and generally “gave me
a shot.” Thank you Vivek Vaid, Greg Goff, Mitch Shue, James McClamroch,
Perry Marchant, and Floyd Strimling. Also, a big thank you to my dad, who was
always full of love and encouragement. And last, but in no way least, I am
forever grateful for the coaching and education from Garret J. White, the
founder of Warrior training. His coaching and systems showed me I could
write this book. Thank you.

Introduction
This book started out of patterns and practices that I use in my software
engineering and leadership practice. The patterns were found in the wild and
honed through trial, error, success, and repetition.

I wrote this book to help you, the reader, avoid the same common pitfalls that
myself and peers continuously experience. If you are an experienced practi-
tioner of software engineering and delivery, this book will help you follow a
system that works using modern practices and pragmatic decision-making. If
you are new to the industry, this book allows you to see the problems that
are coming for you down the road.

Yes, the same problems are coming! Generation and youth can’t save you –
because software is written by people and paid for with budgets – sorry. But
read this book and steel yourself. Now is your opportunity to take hard les-
sons learned and apply them in a systematic way that will provide wisdom
beyond your years.

All in all, this book is not just a collection of patterns. There is a pattern to
the patterns – and I call this entire system LIFT Engineering. We get into
the details of LIFT immediately in Chapter 1.

Thank you for reading. I hope this system and the guidance inside serves
you well!

https://doi.org/10.1007/978-1-4842-7936-6_1

© Stephen Rylander 2022
S. Rylander, Patterns of Software Construction,
https://doi.org/10.1007/978-1-4842-7936-6_1

C H A P T E R

1

Patterns
This book describes a comprehensive process for software engineering called
LIFT. LIFT is not a process. LIFT is not a methodology. LIFT is not something
you read and put on a shelf. It’s also not made up as you go. This is a system
designed to tie a series of activities together that don’t often get the attention
they need during the construction of software-intensive systems. This book is
not a series of individually written chapters edited together. Instead, it’s
cohesive in nature to help you succeed at the business of constructing and
operating software. This is your software construction system.

 Not a Process
It’s not a process for planning a product portfolio. It’s not a process for
identifying market gaps or identifying breakout ideas. It’s not a process to
accelerate user design or validate product ideas. It’s none of these.

It’s also not an open process that you then plug your processes into. It’s not
SAFe or scaled agile, it’s not scrum or lean or kanban. It’s not an agile process
or framework at all.

It’s not a process for building products. Or great products. Or products that
wow and amaze.

https://doi.org/10.1007/978-1-4842-7936-6_1#DOI

2

 System
It’s a system for building software that works. Constructing software. Testing
it. Managing change. Releasing software. And then operating the software.
That’s it. LIFT is concerned with how the activities are accomplished so that
they are repeatable.

 The Problem
A tremendous amount of literature exists on agile product development as
well as lean product development and a hundred other terms all geared on
principles. Almost all these agile development frameworks/systems/
philosophies require teams to adopt and customize. Adopting something off
the shelf or more likely a blog/website is tough. Once you need to customize
it, it starts to fall apart at the seams.

 Craftsmanship Doesn’t Help
Parts of the software industry perpetuate this idea of craftsmanship, which by
now has lost much of its momentum. They say software should be well honed
like a craftsman would their leatherwork, tanning and stretching a hide to
make units ready to be dyed, cut, and formed into various useful things. The
craftsman works their woodworking bench – they know where every tool is,
what they do, and when to use it. Craftsmanship is noble. Craftsmanship is
modern. Craftsmanship is ascribing credence to things we want in our lives
through our work, even if often at odds with the goal.

In software, this comes to bare through practices like pair programming and
test-driven development – and probably a handful more. But, top-level, these
are the core practices. The idea is that writing prescriptive and descriptive
tests over your code is what a craftsman (person) would do. Each function
has a purpose – each line of code matters. Nothing is just whipped out or
copy/pasted into place. Each method makes sense in the broader context, and
software patterns are applied.

The notion that software is craft has always been tenuous.

Look at the movement's history – a break from the agile practice folks, who
only cared for process and not software, meant physically writing software
required a name. Something special to call its own. But writing software is
writing software. It doesn't matter if thousands of scrum masters have
conferences – that doesn't ship software. Engineers ship software by putting
hands on keyboards, testing, discussing, and project managing software.

Chapter 1 | Patterns

3

Consider this, when was the last time two scrum masters got together and
created a startup that made millions of dollars? How about two software
developers? These are entirely different stories.

Therefore, there is less craft than it appears. Considering how subjectively
complicated software is, it cannot easily be craft. Case in point, software that
scales is the sign of success commercially. But small-batch cheese craft is
coveted because it doesn't scale. Thus, the dichotomy.

 Reality
Times are lean. Only the biggest, best, and wealthiest organizations can afford
massive engineering teams of the best engineers globally. Their large mass
creates a strong gravitational field pulling in engineers from all over the globe
as you can see in Figure 1-1.

Figure 1-1. Gravity pulls talent towards the center

Not only that, but these massive organizations also deploy agile coaches and
project teams to run deliveries. Or they have such a modern, scalable
architecture, hundreds of small teams can act somewhat autonomously, and
they don’t need to scale together. And finally, massive, well financed teams have
the advantage with the capacity to custom build internal software, monitoring
and deployment systems. Consider the number of open-source projects just
out of Netflix during the past 10 years. These are material advantages.

Managers and leaders outside of these spheres need an advantage. You know
you’re one of these managers when a third or more of your team is offshore,
you have constrained budgets not based on your team's success or the
primary purpose of the organization is not the software you build. These
managers and leaders need a toolkit and a process (the system) which ties the
activities of software engineering together into something that is prescriptive,
efficient, repeatable, and operable. Figure 1-2 illustrates these four primary
challenges.

Patterns of Software Construction

4

Figure 1-2. We need software to last 5–10 years to get a real return on investment

 The Solution
LIFT is focused on objective measurements, repeatable activities, and the
full life cycle of software engineering. Philosophies and case studies are fine.
But actions count more. And outcomes are the only thing that matters in the
game of software. It either works or it doesn’t work.

In preparing for battle I have always found that plans are useless, but
planning is indispensable.

—Dwight D. Eisenhower

Are your problems upfront in how work is understood before it’s developed?
Look at the LIFT Planning phase for an approach.

Are your problems in the construction of software and that it’s always a
scramble? Too slow? Unpredictable? Then look to the LIFT Build phase which
provides the template for repeatable execution.

Product development challenges are not uniform. However, the scope of the
challenges is known. Even though LIFT is a total system, you may choose to
focus heavily on one area over another – and that’s fine.

LIFT is designed to give leaders and teams a “lift” so that they don’t have to
reinvent the “how to” for each activity in planning, building, and operating
software over and over. Or worse, read blogs on what some small team in a
top-3-big-tech company did and then try to replicate it – ending in predictable
failure. LIFT operates in 90% of the software space – not unicorns.

Chapter 1 | Patterns

5

Boat crew six, you better start putting out!

—SEAL Instructor, BUDS (Extreme Ownership)

LIFT is made up of the following evolutions:

 1. Plan

 2. Build

 3. Test

 4. Release

 5. Operate

 6. Manage

It’s easy to think of the six evolutions using a block diagram, like Figure 1-3.

Figure 1-3. Lift Evolutions Overview

Each evolution is made up of a series of activities. How these activities are
performed, the details of each and when to do them is the primary purpose of
LIFT. Executing on any one of these evolutions on their own will give you
benefit from where you are today. But it’s how the activities (illustrated in
Figure 1-4) are tied together into one system that will raise your team and
provide material, long term, repeatable results.

Patterns of Software Construction

6

Figure 1-4. These activities are what LIFT is focused on because it is what is most variable
between team to team and project to project

Further, building software systems requires a formulated strategy. According
to Michael Porter in his seminal work “What is Strategy” in HBR (reference),
“Strategy is creating fit among a company’s activities. The success of a strategy
depends on doing many things well - not just a few - and integrating among
them. If there is no fit among activities, there is no distinctive strategy and
little sustainability. Management reverts to the simpler task of overseeing
independent functions and operational effectiveness determines an
organization's relative performance."

LIFT models some of Porter’s approach by forcing the activities to live inside
evolutions – and then tying these evolutions together. Figure 1-5 shows how
connecting the evolutions in turn connects the end-to-end delivery strategy.
The project is figurately climbing the mountain, to a new peak, repeatedly.
And since the numerous activities are tucked nicely into evolutions, there are
less wires to connect and the process becomes easier to envision and to
execute.

Chapter 1 | Patterns

7

Porter’s examination of an entire corporation can be applied to a product
engineering department, mid-size organization, or anyone building internal IT
systems. Excellence at only the release portion of the life cycle, or the test
portion will not deliver big results. It probably won’t even deliver the required
business results. And if each link in the chain doesn’t connect with the next,
then the entire chain is brittle. Not having these activities clearly operationalized,
systematized, and repeatable also means that the team will silo themselves.
This then has managers attempting to optimize only their areas (development,
operations, test), or exec teams trying to optimize for them and trying to
then drive cost efficiencies. This will not lead to a competitive advantage. It
just leads to leaner vertical, independent functions.

 Rinse and Repeat
Like any good system, LIFT is repeatable. Figure 1-6 shows the repetition of
evolutions.

Figure 1-5. Climbing the evolutionary mountain

Patterns of Software Construction

8

Figure 1-6. The evolutions create a system cycle

Now that we understand Porter’s intent behind a formulated strategy, it’s
clear why an evolutionary strategy with software system development is
required. We cannot waterfall software development by loading all
requirements at once and then delivering a big bang at the end – the industry
has proved this ineffective with today’s product turnaround demands. And we
can’t rely on agile consulting to continuously build “what the customer wants”
because this process is more expensive up front than it sounds and often
causes massive friction against internal organizational structures. Instead, like
in Figure 1-6, we incrementally build the parts of our software system and
release. The cadence of the system is to build and release.

 ■ Note Ten out of ten readers of this chapter will have an opinion on waterfall, so let’s clear

the deck for the rest of this book. Waterfall is not sequentially writing code, testing, and releasing.

What can be wrong with that? How does one test code that is not written or release code that is

not tested? No. Waterfall is the complete upfront end to end plan with very little flex in the joints

and expecting the entire system to integrate and test successfully at the end. It is not evolutionary.

It is more like the big bang of the universe – there was nothing and then there was software in

production. And it doesn’t work.

LIFT gives attention to all the pieces that make up the trivialization of software
construction. Testing is difficult. Releasing is often complex. Operating a
production system is hazardous. And managing the overall process and people
to do this work is complex at the least and chaotic at the worst.

Thinking about software construction as six evolutions that make up one
system cycle, which is then repeatable, gives this required formulated strategy
a backbone to the entire endeavor of software construction.

Chapter 1 | Patterns

© Stephen Rylander 2022
S. Rylander, Patterns of Software Construction,
https://doi.org/10.1007/978-1-4842-7936-6_2

C H A P T E R

2

Getting Started
Things You May Need

 Prerequisites for Lowest Friction
 1. Your teams (entire engineering organization) are broken

up into squads, if you are operating with 10 or more full
time engineers (developers, testing, UX, etc.).

 2. There is someone playing product owner representing
product management.

 3. Someone plays the role of a scrum master, for example,
daily coordination facilitator.

 Or Not
If you don’t have the prerequisites, you can still be very successful with this
system. Almost all other literature on running flexible, modern engineering
projects specifies these roles be filled by someone full time. This is just not
reality. Teams all over are strapped for time and resources and having a
product owner separate from a product manager is rarer than it sounds when
reading online articles.

https://doi.org/10.1007/978-1-4842-7936-6_2#DOI

10

This system is not tied to agile, waterfall, water-scrum-fall, or scrumerfall.
LIFT is how we build software; therefore, it is compatible with where you are
right now and your team structures. More than anything, LIFT will help you
get started, past the paralysis and into healthy motion.

 Must Haves
•	 A work management tool (Jira, Azure Boards, etc.).

•	 A backlog of work functioning as some sort of
requirements. This can be in the form of a digital backlog
in your work management tool or written set of user
stories, or a set of feature requirements written up and
organized into a document.

•	 A clear Product Roadmap that the team understands.

 Charter
Before we get to the evolutions of LIFT, there is an additional concept that is
very effective no matter the size of the project: a project charter document.

Don’t let the idea of “yet another” document worry you – this one is written
with the intent to reduce scope. Yes, this is the primary scope reduction
document – and that is something to be excited about... so don’t let the
opportunity pass.

The Charter lays out the goals of the project, the desired outcomes, what
isn’t required, known dependencies, and risks. It provides a guiding direction
for the team working on the project as the common understanding is derived
from this simple document. There isn’t more direction on this because it’s
meant to be simple. Table 2-1 shows a basic outline you can use or download
a copy from the LIFT Engineering site.

Chapter 2 | Getting Started

11

Table 2-1. A basic project charter

Business case

 •

Problem statement

 •

Solution

 •

Timeline

 •

Goals and success criteria

-

-

...

Assumptions, constraints, and dependencies

 •

In-scope/out-of-scope

-

-

…

Risks

-

-

Project team and stakeholders

 • Lead

 • Team members

 • ...

 Architecture
The topic of topics. Architecture. What is architecture, what isn’t architecture?
Who makes these decisions and how are they introduced into a system? LIFT
is not concerned.

LIFT is concerned about two concepts of architecture, if and only if there is a
required change to the architecture. This is

 1. The Current State of the Architecture

 2. The Future State of the Architecture

That’s it. What happens with architectural choices, for many services, one
service, no APIs, tons of APIs, monolith, or distributed system matters very
little. It’s all execution details at one point or another. Wait, take a breath. It’s
OK – it really is just details when looked at from a high enough level.

The question is if the concepts can be captured into a view that will help the
project team design, build, test, deliver, and operate the system be it net-new
or updates to the existing system.

Let’s play this through just a bit. Let’s say, the new project, Project Boots, is a
product with (1) one web front end and (2) one small API layer and (3) one
database. The team analyzes the new requirements and sees that they will
need to add a couple new APIs that are asynchronous connecting to third-
party services. Because of this new behavior they will introduce these APIs
into a different container from the existing APIs. The architecture has evolved,

Patterns of Software Construction

12

the core concepts are the same, but there are now new pieces. Figure 2-1
shows a current state architecture and Figure 2-2 shows the evolved future
state architecture.

Figure 2-1. This is a super-simplified Current State Architecture view. Web front end, API,
and a database

Figure 2-2. This is the Future State Architecture view

Here, in Figure 2-2, it’s clear what the changes are because they are highlighted.
Almost anyone from a junior developer to a group head can read something
like this and grasp the change. From here, the discussion of infrastructure,
security, and operations can start. This will win you many friends in your
current team and your career. And, most importantly, it will set the project
up for success by removing early project friction and confusion.

Like the Charter, another series of chapters could be written on Current vs.
Future State Architectures, so we won’t go there. This concept is simple. Just let
it stay simple and don’t overcomplicate it.

 Mindset to Bring
Each evolution in LIFT is about small, consistent steps. An evolution is made
up of activities. Each activity has steps to take. It’s not about running the
marathon – it’s about running the next mile and the next mile and the next

Chapter 2 | Getting Started

13

(continued)

mile. By the end, you ran the marathon. And you got there because you knew
where the finish line was. You didn’t just run in circles hoping to go 26.2 miles.

Focus on the next step to get to the next evolution.

Every time you execute the system, through the six evolutions, you will put
work items in the next release/iteration which improve the overall process
and your software for the next round. Therefore, this mindset is continuous
improvement.

Keep improving what you have.

The next mindset is organization. This will serve the execution of the
evolutions. Next is discipline. Discipline will allow you to execute the activities
in each evolution even when you think it can be skipped. And attention to
detail will serve the overall success of the project because details are the
difference between success and failure, being an amateur and being a
professional.

Details Matter.

Summary: Focus on the next step, continuous improvement, organization,
discipline, and details matter.

The difference between a boiling pot of water and warm water is only
one degree.

 Definitions

Term Definition

Tech Lead A tech lead is someone in the development team who can operate with the
product owner and other stakeholders. This role is usually writing software,
but sometimes it’s a manager who is a little less hands on.

Product
Owner

This individual directs what the work is and the general sequencing of customer
facing delivery. They must find the requirements, document them in the work
management tool.

Document A document is any digital, or physical, set of notes and descriptions for a
particular set of work.

Backlog The backlog, as used in this context, refers to a backlog of user stories/epics/
features in a work management tool (WMT) or just a set of requirements in
some other format.

Patterns of Software Construction

14

Term Definition

Work Item Any digital representation of a task, user story, tech story, backlog item.

Steel
Thread

A development approach building small pieces of all non-functional
requirements to exercise the entire system.

Big Rock Complex, high effort, high reward work.

Chapter 2 | Getting Started

15

 System Evolutions

Patterns of Software Construction

© Stephen Rylander 2022
S. Rylander, Patterns of Software Construction,
https://doi.org/10.1007/978-1-4842-7936-6_3

C H A P T E R

3

Plan
Evolution #1

The Plan evolution in LIFT starts after the “we know what we want to
build” phase of your overall product planning process. The planning here
consists of taking a backlog of requirements, product desires with an
architecture overview and translating that into a releasable version of a
software product.

The releases may be immediately consumed by users, in a silent deployed
state or released into an upstream integration environment with other
teams. The point is: this is planning to start construction of one or more
incremental software releases – not planning for a year or executing a
portfolio of projects. The scope and focus are important for success. Success
is in the details.

https://doi.org/10.1007/978-1-4842-7936-6_3#DOI

18

Category Description

Target A clear, actionable, set of releases the team can start slicing apart

Inputs Your backlog or set of requirements for a release

Outputs 1. A sliced-up release plan, with more than one delivery phase containing
pieces of all non-functional requirements

2. One document outlining the release plan

3. Work items loaded into your work management tool

4. Sequenced plan for Building

Visibility Work items loaded into your work management tool (WMT)

The Win Confidence that the steel thread execution plan will end with working
software, including non-functional requirements, exercising the different parts
of the system and the business features

You’re at the start of your project. At this point, you have a backlog of work –
something that needs to get done. The first step is to look at this backlog and
figure out what’s releasable, in what order, and what it will take to
accomplish that.

 Target
Step one is to identify your target. What is your goal? Write it down and
make it clear so everyone agrees.

For instance, “the target of this release is enabling our professional services
team to configure the user management screens for a customer.” This is
challenging, has a purpose, and is not overly prescriptive.

Anti-Pattern! Heads Up!

Beware the overly prescriptive business feature that is just telling the engineering team not
only what to implement, but how. An anti-pattern is a release goal like “enable the new
technical widget across all pages of the application.”

That’s tough. And just begging to fail. A widget is almost always some technical component.
And “all” pages? Really? And for what purpose? Just rip out the old widget and replace?
There isn’t any new functionality? Test cases? Users? Screens? Nothing?

Success is found in the details. You may have to coach the business target into something
more like “upgrade the most used pages in the app so we can authorize content in the
widget like the page.” Why? Because our customers need more granular security because
of what we learned about how they use the software.

Chapter 3 | Plan

19

 Map It Out
Step two is to take your user activities (or system activities, same in the
context of LIFT) and map out a visualization of these. These activities may
come from feature lists or a document of bulleted requirements for user
activities. If you don’t have this, then that’s a problem and it will be a struggle
to proceed. These are a part of the Inputs to the Plan Evolution we are in. Go
back and get them.

You can do the mapping on a whiteboard, stickies, in software – it doesn’t
matter. What’s important is to capture the activities moving left to right on
what you’re trying to accomplish. Think wide and shallow first. This forms a
backbone for the work.

Then, and only then, start thinking about and filling in the details. It will look
a little like Figure 3-1. There are probably cards that say things like

•	 Wire up our logging library to login page

•	 Update deploy script for dev environment

•	 Show a static grid on the dashboard screen

Figure 3-1. Mapping out all activities that make up releases

Now, the activities laid out in Figure 3-1 can be anything. What’s important is
capturing the activities so that light is cast onto not just the business
functionality, but the work and activities to make these ideas come to life.

Patterns of Software Construction

20

This is an ideal format for engineers to express the need for non-functional
requirements, or simply capture the effort to get a minimum-ready-
release state.

Finally, slice releases out of the work (Figure 3-2), where a release is working
software delivered to your stage, UAT, or live environment.

Figure 3-2. Slicing out releases from activity mapping

 ■ Note Why do we say stage, UAT, or live? Because every team has a different set of environments

for different reasons. And those reasons don’t matter. LIFT assists in filling the basics with patterns

and proven steps. In this case, a team may have deliveries to stage and, then after accumulating

two or three of those, feel like they have enough to go live. Or maybe your product is already

mature, and these features are going straight out to users. Either case will work.

There is an excellent book on this topic of planning called User Story Mapping
by Jeff Patton.

Now, if this is your very first construction phase of a new product, please
consider identifying the absolute smallest product you could build which
would exercise end to end functionality. Small. Like really small. This is possibly
a web page that says “hello world” with React, calling a Java API that writes a
message to a database that says “hello” and logs the activity. Then deploy that
to dev. Why? Because it tested N pieces of the system, proves your build
pipelines work and that it will work somewhere besides a laptop.

Chapter 3 | Plan

21

 Development Strategy
Over and over, we will refer to the preferred development strategy as Steel
Thread. This development strategy says that we’ll take just enough of all the
major functional and non-functional pieces of a story to make it usable. We
will go much deeper on this in the Build Evolution. For now, know that the
development strategy is to use a steel thread and progressively mature the
feature.

 Big Rocks
Big Rocks is the LIFT way of interpreting the famous concept of First Things
First. Now, First Things First was not invented here. This concept was first
written by Stephen R. Covey – a great thinker of the human condition and
productivity.

This principle is so basic, but so important, it’s good to take a few moments
to review using an analogy of filling a bucket.

•	 Big Rocks are the highest priority tasks and projects.

•	 Little Rocks are urgent items. You must do them at some
point, or you’ll get overrun by them.

•	 Sand is everything unimportant that doesn’t materially
move you, the team, or product forward.

So, what does this have to do with developing software? Everything. The Big
Rocks in your project are the most important and difficult tasks. An example
of a Big Rock is “integrate the new Global Authentication System for Role
Management.” Or “build a proxy to the new Pricing API that returns under
5ms.” This is non-trivial work! Most mid-size, 3–6-month projects, have at
least 2–3 Big Rocks.

And the thing is, we must get after the Big Rocks first because they are the
most challenging, will require the most effort, and have the highest risk of
failure, which brings us back to “First Things First.” It’s a waste of time to
prioritize your schedule. You have to schedule your priorities. This is why the
Big Rocks must go first. See the graphic in Figure 3-3.

Patterns of Software Construction

22

Figure 3-3. Big rocks first

Like I said, it’s simple. If the pebbles and sand go in first the big rocks won’t fit.
If the rocks go in first, then the pebbles and sand can flow around it, and
everything fits. Success with LIFT means putting the Big Rocks first and going
after them intentionally.

Effective leadership is putting first things first. Effective management is
discipline; carrying it out.

—Stephen R. Covey

 Write the Stories
LIFT has adopted the agile term “story” or “user story” because it’s so
prevalent in the industry. Substitute your own word or phrase if it makes it
easier for you when communicating with your team.

Now that you have a few releases sliced out, write the stories. How you write
the stories is outside of the scope for LIFT, but just make sure they are

 1. Actionable.

 2. Specific.

 3. Completable with the development strategy.

 4. Have dependencies called out.

 5. Testable with test criteria.

 6. Entered and organized into your WMT as epics, features,
or some other grouping. It’s sometimes helpful just to
put them all into a Release.

Chapter 3 | Plan

23

Test Criteria?

The debate on where test criteria goes to is a waste of time. The testing criteria for a
story goes into the story in the work management tool. It doesn’t matter if it’s called
“acceptance criteria,” “test steps,” or “expected results.” The criteria of how to test and
the results of the test are captured in the story. This keeps everything about a particular
story together.

What about bigger stories? There is no such thing as a big story. This is a smell that your
story is doing too much.

What about capturing lengthy details and diagrams on complex processes? This is not a
story level concern. Document these narratives and system designs in another tool and put
the link in the story for reference.

 Build the Sequence
LIFT Engineering uses all good tools at our disposal. A key, powerful tool are
basic Gantt charts. A basic Gantt chart allows you to sequence work, show
dependencies, communicate plans to stakeholders, and understand when
things are going off the rails. You don’t need to run the whole world from
your Gantt chart (or call it a technical sequencing diagram if it makes you feel
better…), but it will be invaluable if you are

 1. Building software with multiple dependencies

 2. Building software with more than one team or functional
parts of an organization

 3. Building software with distributed teams

 4. Building software that is time constrained

So, it’s almost always helpful. Figure 3-4 illustrates a basic example.

Patterns of Software Construction

24

Figure 3-4. Gannt charts help visualize the sequence of activities

 Summary
Here are the patterns to learn:

•	 Map out the project from what you know

•	 How to design for the Steel Thread

•	 Identifying Big Rocks

•	 Sequencing the work

It’s important to deploy these technical patterns to avoid the agile Hamster
Wheel effect described here.

Chapter 3 | Plan

25

Agile Hamster Wheel

The Agile Hamster Wheel effect is when a development team feels like they are doing the
same thing over and over. There are no breaks. No seams to pull apart.

Life becomes one big backlog – groom, build, plan, release, groom, build, plan, over and
over. When this happens, the technical platform can suffer. There isn’t room in there to
think. That’s why the patterns of slicing work into releases via steel threads is important.
This makes sure that the non-functional requirements don’t get thrown away or that
features without entry points don’t get deployed.

Lastly, lots of teams are doing their retrospectives (post-release review, etc.) in the same
stale way every time – so the team needs to mix up how they perform these rituals. It’s just
one quick Google search away. If the team feels like life is this rut, try putting in a couple
break days between sprints to take a breath to think about the future.

 Activities Summary

•	 Slice work into releases.

•	 Identify product features that are most important.

•	 Go left to right on them.

•	 Slice out the releases.

•	 Development strategy: Find the steel thread on tech
that ties them together.

•	 Starting with a 4-cycle engine before building a race
car engine. Basic logging. Something reads from the
database. Basic.

•	 It’s more like color by number. Do all the 1’s. Then
all the 2’s. Then all the 3’s.

•	 Build a basic wall board. (optional)

Patterns of Software Construction

26

•	 Identify your Big Rocks.

•	 Convert your releasable steel thread into stories for each
delivery making up a release. Load them into the WMT.

•	 Build a basic Gantt showing sequencing and dependencies.
You will most likely have dependencies if you work in an
organization with more than 20 engineers.

•	 It’s a pattern. Learn the pattern. You learn by building up
reps so get to it.

Chapter 3 | Plan

© Stephen Rylander 2022
S. Rylander, Patterns of Software Construction,
https://doi.org/10.1007/978-1-4842-7936-6_4

C H A P T E R

4

Build
Evolution #2

In the build evolution, the team constructs software using the best techniques
available to them. LIFT is not prescriptive of how to write code. Here, we will
examine what most software looks like and extract patterns to consistently
win this evolution. And even though agile is not a panacea, some of the
techniques are helpful and the terms are common enough not to redefine
them – starting with what a sprint looks like in the LIFT world.

Category Description

Target Increments of working software as close to the live environment as possible.

Inputs Sliced up release plan stitched together with a steel thread approach.

High-level work-items in your WMT.

Outputs A releasable version of software.

Visibility Clear view of WIP, velocity, and defects in WMT.

The
Win

You have Working Software in a non-dev environment that has been tested
successfully.

https://doi.org/10.1007/978-1-4842-7936-6_4#DOI

28

 Anatomy of a Sprint
Few things cause more pointless disruption to teams than the fallacy of the
two-week Sprint. Even writing this is dangerous. There are legions of agile
practitioners and agile desk jockeys who are arbitrarily tied to a two-week
delivery cycle. Well, two doesn’t mean anything. Why not one, or six? Look
at earlier books on agile and you’ll see that – as learning to be agile in mindset,
practice, and delivery has nothing to do with compressing development and
testing into two weeks. Let it go.

Therefore, to make the point, LIFT recommends three weeks or more.

Why three weeks? Three weeks allows organizations that have multiple
departments and legacy overhead (again, LIFT is for all teams and companies,
not fantasy teams) to coordinate. If your team could really use some extra
time for regressions testing, some time to plan the next sprint, and some
remediation time, then more than two weeks is needed. I’ve seen consistent
sprint processes of four weeks, six weeks, and two months.

The objective is consistent sprint success and the means to this is consistency
and discipline. As of this writing, I’ve seen the three-week sprint successfully
increase quality delivery on at least five occasions, with different teams,
different firms, and different cultures.

Consider this scenario:

A financial product that is considered one application by stakeholders (sales,
product management, customers), but it’s really four different underlying
applications stitched together, six services your team maintains for your
product, two services you maintain and are shared with other internal teams,
consuming three services from other teams, and altogether there are five
different databases in play. This is all laid out in Table 4-1. We won’t even
mention what the infrastructure looks like!

Table 4-1. Dependencies piling up

Dependency Owner Quantity

Applications You 4

Services You 6

Services (shared) You 2

Services Other teams 3

Databases You 5

TOTAL 20

Chapter 4 | Build

29

Some quick math and the team is dealing with 20 dependencies. What is the
sense in taking a team that must manage this much complexity and ask them
to release new features to production every two weeks? Here are five possible
negative outcomes from this setup:

 1. Miss on delivery date

 2. Miss on scope

 3. Miss on quality

 4. Miss on planning the next sprint (from exhaustion and
time compression)

 5. Burns out the team

If you really like two weeks, then go for it. Maybe you have enough release,
test, and other automation with verification that the shorter timeline will
yield good results. But beware the hamster wheel if you’re just getting started.
At the end of the day, no one cares. Find the duration that works. You want
success – not metrics.

In Figure 4-1 is the anatomy of a three-week sprint. What follows the chart
are the important activities across the weeks.

Figure 4-1. Anatomy of a three-week sprint

How to read the three-week anatomy:

S stands for Sprint. So, S+3 is 3 days after the start of
the sprint.

R stands for Release. Therefore, R-1 means 1 day
before Release.

Patterns of Software Construction

30

 Week 1
The first week is about making active, meaningful headway on the most
important development stories loaded up from planning. Table 4-2 below
shows planning for Week 1 happens during Week 3, so don’t worry if it
doesn’t make sense yet. The overall goal of Week 1 is to develop functional
software and attack the hardest problems.

 Week 2
When moving into Week 2, expect to start really closing stories, getting test
signoff on important items, and starting to think about the release. The
Release Prep Meeting is more important than it may sound. It’s doubtful it
sounds advantageous at all – well think again. This session surfaces the details
that can completely derail a release. If there is one place an engineering team
gets slammed by its stakeholders it’s botched releases – don’t be that team.
Table 4-3 belows outlines the Week 2 activities.

Table 4-2. Week 1 Activities

Activity Description

Sprint Start (Sprint
Start – 0 days)

This is the rocket launch.

Development +
Test

Attack the most complex stories first, in the simplest steel thread
approach possible.

Always do the tough ones first. There is plenty of research out there on
why finishing the difficult things in life before the easy breeds
consecutive success.

Test Writing
Complete

The great majority of test cases are documented by now. These could
be in document form, in the work items, or another tool. This is a team
choice. (Prefer to include them in the original work item when possible.)

Maybe you have a test case management tool – hooray!

Chapter 4 | Build

31

 Week 3
The third week is really about Week 1. Yep, now we are planning to start
again, fixing must-have defects for the release, and physically releasing the
software. Some of the planning activities listed in Table 4-4 can be combined
as well. For instance, some teams do not do the Tasking session because the
maturity of the team only needs the Planning & Estimating – then when the
sprint starts, they naturally order and execute the most difficult work first.
Make sure engineers are driving this decision and not project managers,
product managers, or scrum masters. Engineers build the software, therefore
order the work.

Table 4-3. Week 2 Activities

Activity Description

Mid-Sprint
Review

This is an opportunity to review all the work completed so far – development,
test cases, functioning software, automated tests. Look at the plan and see
where the sprint is compared to where you are expected to be. Did the Big
Rocks get attended to? Is there complexity left for the end? If so, this is the
place to identify these and adjust.

Release
Prep
Meeting

Start planning for what a release looks like. Are there database schema
changes... how will this be handled? Does the security team need to review
some new components? Any changes required to the deployment script? Will a
new feature need to be flagged on/off and who will do this? Use this time to
capture the variables that go into a successful release, plan for it, highlight risks,
and find solutions.

Code
Complete

Complete writing new software and make final commits! (They aren’t final/final
because we have other activities like test/fix in Week 3.)

Patterns of Software Construction

32

Table 4-4. Week 3 Activities

Activity Description

Pre-Planning
(Sprint Goal and
Story Slices)

Planning is a legitimate, organized, controlled activity. This is the session
before Planning to pull in outstanding issues, tech design, dependency
changes, etc. that should be included in the upcoming planning session.
This is not an all-team activity.

Identify the goal for the next sprint. Look at what you want to
accomplish and see if you can slice it up into something that makes
sense. But don’t worry about it being perfect.

Must-fix Standup There is a ton of testing going on right now. The must-fix standup
includes only items that must be fixed to deliver on the goals of the
release. Nothing more. Nothing less.

Retrospective
(Retro)

The Retrospective is any format the team chooses to reflect on the
sprint, what worked, what didn’t. There are many options out there to
choose from to run this session.

Planning &
Estimating

Planning is taking the work that is targeted to be built and released,
discuss it, estimate it, sequence it, and generally create the overall plan
for the next sprint. Final story slices happen here. This is usually an
all-team activity.

Release Sign Off Someone from each function (engineering, test and product) gets
together and reviews what is in pre-prod, and only then agree to do a
release. To make this nice and tidy, document the decision and stick it
online where everyone can find it later.

Release Deploy the software and make it available for your users! Woo!

Task Writing Take the Plan (from Planning and Estimating) and start to break it down
into smaller tasks for the first week of the sprint. This helps everyone
understand their role and maximize contributions as the team starts
running at S-0 again. (Task writing can be optional and some teams do
not like to go to this level.)

Test Case Writing Write the major test cases, create placeholders for the big rocks, and
activate the part of the cycle that makes sure we handle risk.

Sprint Prep – Gap
Day

Breathe. Take a break. Clean up code, whiteboard ideas, and prepare for
the next sprint. Don’t underestimate the impact of a good gap day(s) on
prevented burnout and increasing cohesiveness of a team.

Chapter 4 | Build

33

 Most Software...
Most software looks like Figure 4-2.

Figure 4-2. Most software looks like this

Sure, your system doesn’t look exactly like this. But if you’re inclined to read
a book about software systems it may not be too far off. You wouldn’t be
reading this unless there was something you knew could be done to increase
your speed, quality, or efficiency. Add in some more APIs, increase the number
of databases, include complexity in stored procedures or some other open-
source java libraries, etc., and you can make the mental match to your day-to-
day reality. There are innumerable variations out there in the details – but
business applications follow patterns. Lots of services, few services, thick
clients, thin clients – there is not much new under the sun until quantum
computing takes off. And if that happens, then hopefully we don’t need these
books anymore.

Your product is not a snowflake. Your team is not a snowflake. Understanding this will give you

freedom to focus on what matters – shipping software.

Patterns of Software Construction

34

Does it matter if most software (business software) is similar like Figure 4-3
above? Yes. 100% yes! The similarities allow LIFT to work. There are only so
many technologies, architectures, and dependencies out there and pulling
your view up a few levels will allow you to see the pattern.

 Non-Functional Requirements Pay the Bills
As software professionals, we aren’t paid to solve business problems. That’s
just nostalgia from mainframe days. Old stuff you’d read in Peopleware or
books leading into the turn of the century talk about “solving the problems of
the business.” Right. That’s quaint.

We are paid to handle the complexity, connect the components, enable UIs,
secure data, integrate systems, and deliver functionality that in turn incrementally
puts the product and business in a position to grow. What is built must work
across devices and oceans. It must be superquick and everything that uses a
mouse or a tap to navigate is compared to Google Maps or an iPhone.

How do we know this profession isn’t all business “problem solvers”? It’s so
obvious you’ll miss it if you don’t look hard. Global outsourced software
development. We don’t outsource, offshore, nearshore to solve business
problems. We do it to produce working software.

Produce Working Software and then trust that the product solves the
problems set out by the product, leadership, and marketing teams. Working
software to Product and Sales teams really means software that runs all the
time, quickly, and as expected or better. Working Software to engineering
teams can be inspected, debugged, observed, changed, and operated.

Figure 4-3. The secret pattern of all software

Chapter 4 | Build

35

 Non-Functional Areas to Completely Own
What does it mean to own these areas? It means professionally making sure
that the areas receive attention and are included in the build and construction
of software.

The key non-functional topics for the BUILD evolution of LIFT:

 1. Defensive programming

 2. Heavy logging

 3. Debuggable software

 4. Performance

 Defensive Programming
Write code expecting it to fail. Amateurs write software for happy paths.
Professionals write software expecting it to fail. Professionals limit hubris and
know they aren’t omniscient. Expect your code to fail, software to fail,
dependencies to fail, systems to fail, and servers to fail. Don’t have servers?
No problem. Your serverless functions can also fail for many reasons – like
network or permissions.

So, how do you program defensively? There are two primary ways: exception
handling and guard statements.

Exception handling, for simplicity’s sake, in languages like Java and C# are try/
catch statements which you can see in Table 4-5.

Table 4-5. Exception Handling

Basic Exception Handling

try{

 callSomeRiskyMethod();

}

catch(Exception e){

 log(e);

 doSomethingElseMaybe();

}

Assuming you are a full-time programmer or have been a programmer at
some point in your career, this looks trivial. You may even be wondering how
something so simplistic would make it into any modern book on software.
Well, building software is about a strong foundation and working its way up
the stack. Is your exception handling really handling exceptions?

Patterns of Software Construction

36

Take these steps:

•	 Have code reviews check for exception handling.

•	 Is the handling doing what it needs to do?

•	 Who is taking responsibility? It shouldn’t be a manager –
look for a respected lead engineer/senior engineer who
will put a flag in the ground for quality.

Next up are guard statements, which are on a level field with exception
handling. In fact, more so for the operations of a working system. While good
exception handling will allow software to avoid “blue screening”* and crashing,
proper guard statements make sure that the execution of code routines is
accurate. See an example of this in Table 4-6.

Table 4-6. Guard Statements

Guard Statements

//EXAMPLE 1

//classic check for null reference exception

if(accountBalanceObj == null){

 getFreshAccountObject(currentId);

}

else{

 //continue execution

}

//EXAMPLE 2

//Checking for a value that affects calculations

if(accountBalance > MAX_CORP_BALANCE){

 return(MAX_BAL_EXCEEDED);

}

Software engineers can practically end the world by not checking for null!
Imagine how many code errors are caught while engineers are debugging
during initial development. Do you have that mental picture? Now consider
how much slips through the cracks! Checking for null is the easiest way to
protect against both inaccurate data and preventing exceptions from bubbling
up and crashing methods, routines, executions, services, and systems overall.
LIFT is a system and systems include basics. Check for null.

* This is a reference Microsoft Windows system crash resulting in a blue screen and mem-
ory dump.

Chapter 4 | Build

37

The second example is focused on accuracy. In this scenario, when an account
balance exceeds the predetermined amount, the function returns with that
error code. The snippet doesn’t say what happened before or after and for
these purposes it doesn’t matter. Protecting the accuracy of the business logic
is what matters. In this case, the method returns. In other cases, the code
may assign a tracker variable a value and that variable makes it all the way
down to the end of the method. There is a time and place for both approaches –
and any other of myriad approaches. Don’t judge the examples, mind the
principle it exposes.

Guard against conditions that will make the correctness of the program fail.
This will prevent defects, yes. It can also help to limit inconsistent errors in a
system which are exponentially expensive to find and fix. Building software in
LIFT focuses on producing working software.

Hello, customer service...

Have you ever been on the phone with customer support, and the agent has a long pause
followed by some keys clicking, a sigh, and “sorry, my computer isn’t working?” Guess what?
That software, built by a software engineering team, has a severe bug. And that bug is
causing broader issues than anyone can readily see.

 Aggressive Logging
Log like your life depends on it. Seriously – take it seriously! Imagine the
derisive laughter of the team taking over after your departure when they tell
their product managers the fixed runtime issues software you build because
they added logging statements and then read them! Use this as motivation not
to be remembered as a hack.

The old team didn’t log anything

New Senior Engineer Paul: “Hey, Sanjida (the product manager), guess what. We added
logging in the last sprint and see that the shipping routine loops 5000 extra times because
of some bug! We fixed it and without even performance testing it can say it’s going to free
up cycles for customers.”

Sanjida (PM): “Really? That’s great, the last team just said it was slow because it was old
code. Why didn’t the last team add logging?”

Paul: “Hmm. Well, I don’t want to throw anyone under the bus... maybe they were busy?”

Sanjida: “Lazy?”

Paul: “Yeah. Probably.”

Patterns of Software Construction

38

Being lazy isn’t professional. It’s an embarrassment. Here are five reasons to
log aggressively:

 1. It’s easy to log.

 2. It lets operators and others observe the runtime of a
system with little effort.

 3. Developers can get details out of their code at a scale
that’s not possible in local development.

 4. Having log statements allows DevOps/secops/it-ops to
construct other systems to make sense of logs, like alerts
and events.

 5. Logging is the simplest way to pull data out of a system
with very little investment.

Questioning logging vs. some other grand idea is excellent in theory. But why
push against a technique so well understood and adopted? There are plenty
of other challenges during BUILD without sweating something like this.

To continue keeping it simple, log these five pieces of information, and your
ops team will high-five you:

 1. Log every successful login or failure with an encrypted
user ID, date stamp, and user type.

 2. Log messages from exception handling blocks that you
didn’t expect to hit.

 3. Log messages from exception handling blocks that you’ve
designated as problematic but expected.

 4. Use log levels, info, warn, error, fail, etc. Keep them
consistent.

 5. All network connection timeouts get logged.

What do you get from this effort? Your operations team can operate the
system without calling you and engineering and generating product incident
alerts. And as you look down that list, really consider the consequence of #5.
Teams can be at odds between “code vs. network” issues. Log the network
failures, and there is less to fight about, and you’ll help the network team get
to the bottom of the problems faster and solve for everyone. Win-win.

Chapter 4 | Build

39

 Debuggable Software
Software is incredibly complex. Debugging software is a primary activity of
software engineers today and far into the future. Therefore, reducing the
debugging effort on the software you and your team write pays itself today in
both the short term and the long term. After all, as soon as the code ships it’s
legacy. Someone, maybe you, will debug it shortly.

There is much literature out there on writing debuggable software. For LIFT,
focus on these three areas:

 1. Small functions

 2. Loose coupling

 3. Code comments

These three areas aren’t going to make the cover of your favorite programming
website. They are the meat and potatoes of system engineering and lean
towards making software work in small increments while thinking about the
end state vs. being a hot trend technology.

A complex system, contrary to what people believe, does not require
complicated systems and regulations and intricate policies. The simpler,
the better. Complications lead to multiplicative chains of unanticipated
effects. Because of opacity, an intervention leads to unforeseen
consequences, followed by apologies about the “unforeseen” aspect of the
consequences, then to another intervention to correct the secondary
effects, leading to an explosive series of branching “unforeseen” responses,
each one worse than the preceding one.

—Nassim Nicholas Taleb, Antifragile

 Small Functions
Write your functions small, as in short, so you don’t end up with spaghetti
code, like in Table 4-7 below. It’s that simple. No fancy refactoring or software
patterns are required to do this, so even the junior engineer can contribute
on day one. Functions call functions. Methods call methods. Rinse and repeat.

Patterns of Software Construction

40

Avoid Coupling Components

Loosely coupled software components are the second key in debuggable
software. It’s a term that’s thrown around at times by know-it-alls, newbies,
or management. Still, it’s a valid design concern and one that can assist with
debugging software, so should be respected.

The concept is simple, but hard in execution for new software engineers.
Don’t let the internals of Component A know Component B’s internals. You
can see this concept illustrated in Figure 4-4. This goes into all kinds of design
thinking around abstraction, interfaces, and polymorphic behavior – but don’t
worry about that yet. Just stick with A doesn’t know how B works. A only
knows how to work with B – but not what B does internally. This is
accomplished differently depending on the language in use. In Java, this is
usually an interface or abstract class. It’s also achievable via naming conventions
and data hiding in just about any language.

Table 4-7. Small functions

Small Functions

Main() {

 getCurrentId();

 getSystemObject();

 log("complete")

}

private int getCurrentId(){

 //call db

 // return id

 //catch exceptions

/* This is considered a short method. */

}

private int getSystemObject(){

 obj system = caller.System.Context.Call.Current;

 return system;

/* This is considered a short method. */

}

Chapter 4 | Build

41

What Coupling Looks Like

Figure 4-4. Loose coupling of components

Anti-Corruption Layers

If there is one practice that can easily, and I mean quickly, be picked up by even
an average experience development team, it’s the concept of anti-corruption
layers published by Eric Evans in his book Domain Driven Design. Domain
Driven Design (DDD) approaches software projects by thinking, modeling,
and building around the domain using abstractions that work. This is different
than the traditional object-oriented programming approach to model the real
world with software. As we all now know, an e-commerce shopping cart
doesn’t mimic the shopping cart in your local Walmart store well at all.
Software is nuanced and complex; a shopping cart made of metal is as simple
as it gets.

Would you like the benefits of micro-service and distributed architectures like
resilience, independent versioning, and deployment velocity without rewriting
your world to micro-services?

Patterns of Software Construction

42

Well, you’re in luck, because the anti-corruption layer acts as a facade or
intermediary between System A and System B. It translates what comes out
of System B (someone else) into your language and data structures in System
A (you). This prevents System B from leaking into your system, and that is
more amazing than it sounds.

From experience, all systems, data, and APIs that aren’t under your direct
control are foreign forces with unclear intentions. That’s right. Managing
dependencies is serious business as your product’s health and long-term
maintainability is on the line.

Think of it like this: if you integrate the Foo API and your app breaks or is
slow, it’s your fault. However, The Foo API team has no problems. They are
the service provider, and you are the user. Sure, the service provider has
different stressors (reliability, uptime, versioning, etc.), but your failure is not
their failure. Your product’s loss is your product’s failure. Period. So, protect
yourself because, in software, no one will come to save you.

Is an anti-corruption layer this additional work? Yes, of course, it’s extra work.
But it pays for itself very quickly. Generally, in life, if it’s too good to be true,
it probably is. Will that new exercise bike make you lose 20lbs? Not right
away. Can you buy a stock that will surely deliver 300% gains? Probably not.
So, you’ll have to put your inner pessimist on mute for a bit because creating
an anti-corruption layer to protect your system from another team’s system
will return significant gains. And it will produce those gains almost overnight.

Consider System A (e.g., your system/product/app/service) is responsible for
calculating car leases’ historical prices. For this to work, A must call into APIs
from System B, which return the last three years’ costs at different fidelity
levels for all vehicles manufactured and headquartered in Europe. They
produce data structures ABC, which have GUIDs (globally unique identifiers).
This is not unusual, nor is it a problem.

Look at Table 4-8 – System A also has to integrate with System C, a daily FTP
drop of 5-year prices for all vehicles manufactured and headquartered in Japan.
This integration has yet another data structure and because they are sane, use
an increasing numeric value as their identifier.

Table 4-8. Systems at play

System B API – Europe System C FTP Drop – Japan

GUIDs Numeric Identifiers

JSON CSV

Chapter 4 | Build

43

You are at a crossroads. Do you want your development team leaking System
B GUIDs and System C numeric identifiers down into all your app code? Do
you want your junior engineer to understand these two data sources’ internals
and intricacy and then start coupling external GUIDs to your internal models?

Thus, the creation of the anti-corruption layer.

All the code goes into this layer. This layer maintains the contracts with the
other systems, performs data translation, and maps your internal models. The
internals of System A now work with the anti-corruption layer, and it can’t
break. It’s your model to your model. Not your model to N models. And
there aren’t foreign abstractions spreading across your codebase. See
Figure 4-5.

If this interests you, please read more about Domain Driven Design in Eric
Evans’ book. It’s also a prevalent practice, and a quick Google search will yield
more than enough results to get started.

Anti-Corruption Layer Diagram

Figure 4-5. Anti-corruption layer working with services

Patterns of Software Construction

44

 Performance
This is a two-edged sword.

One edge says not to overoptimize, which can also be used to mean don’t
optimize early. New engineers and those who lack humility throw around old
Donald Knuth quotes like “Premature optimization is the root of all evil.”

Really? I doubt it.

Let’s dispel the misinterpretations of this quote first. He said optimizing
algorithms by nitpicking at code before it was profiled was a waste of time. He
wasn’t saying that optimizing software before it fell over under use was a
waste of time.

Take this to its logical conclusion and optimizing the right things early is a
healthy practice. Consider a system that handles ecommerce orders – what if
it couldn’t handle more than three concurrent orders? That’s not helpful. Or
a system that exchanges records with a regulatory authority. It can handle one
transaction a second and then the business development team hits it’s goals
and sells 100 more licenses. Now, this is not going to be pretty, because
unless the team gets in there to make significant changes immediately, there
will be a lot of upset customers.

 What Does Early Optimization Look Like in LIFT?
Optimizing early means covering the items that are most likely to have non-
trivial consequences. Notice this list doesn’t mention data structures – those
are a topic once the significant items in the following are addressed. Identifying
and addressing this short list of concerns will yield less problems over the
lifetime of the system.

 1. Make sure connection pooling is enabled to your
database. This will alleviate half of your concerns with
adding additional users to your software.

 2. Avoid tying session state in your web application to a
particular server. Putting state in a cookie or a shared
system is very easy nowadays. Don’t put the session
information in memory on your app server. Why? Because
when you add another app server, the system will fail
behind that load balance as the user state on server A
isn’t available when the load balancer sends them to
server B.

Chapter 4 | Build

45

 3. Avoid nested looping. This one can go under debuggable
software, but it’s more interesting here because the
consequence can manifest itself in the performance of an
application. New hire hero developers love to come in
and unnest loops removing thousands or tens of
thousands of unneeded loops. Keep in mind that
processor cores still treat loops in about the same manner.

 4. Put guard statements and timers on all external
dependency calls. For instance, if the application is
calling out to a third-party pricing service, the response
time is now up to (a) internal queuing mechanisms and
thread availability, (b) the Internet, and (c) the service
provider’s ability. Service providers have bad days, and
they release bugs just like the rest of us.

Now, let’s consider the other edge of this sword. This side denounces
optimizing for scale as not necessary. For instance, internal IT systems really
don’t need your 95th percentile scale qualities. These systems are usually
fixed. A fixed number of internal users, a fixed number of transactions, average
order volume, etc.

A few years ago, I ran into a team building a website where the year over year
user growth had declined for five straight years. They debated pointlessly on
how the system can go from handling 2M unique daily users to 4M daily users.
What for? It’s not going to happen. It wasn’t even the goal of the business! The
product team was generating additional revenue by increased annual
subscription rates and additional site advertising. In the end, the team delivered
a good solution, but it was only for vanity. And the additional complexity will
haunt the engineers who one day take over.

Performance is a key non-functional topic because performance needs
management one way or another. It either needs to get addressed for scalable
support in system design driven by requirements or it needs to be addressed
by requirements so that additional scale and performance is not required.
Ignoring performance expectations is not a professional option in a world
where most software solutions are delivered over the Internet.

 Your Definition of Done
Consider for a moment, in your current environment, what does it mean for
a story (some work item/task) to be complete? Really, when is the work
done? Not ready for testing, not prepared to be committed to source control,
not when it’s ready for UAT. When is the work item “done-done”?

Patterns of Software Construction

46

Having this criterion puts you ahead of many other teams in the industry, so
be glad. Don’t worry if you don’t have this defined – it’s one of the easiest
things you can do – it will allow you to move faster with more confidence.

Table 4-9 gives the LIFT basic definition of done.

Table 4-9. Definition of Done – Overall

LIFT Definition of Done (DoD)

1. Code has been peer-reviewed and approved by at least one reviewer.

2. Developer and tester have done a walkthrough – risks and scope.

3. Confirmed with the tester.

4. QA performed and issues resolved.

5. Automated tests locally and in the integration environment are green.

6. The story is deployable.

7. Code is finalized for our standards.

8. SQL deployable and tested.

9. All files and configuration changes captured.

10. Product owner signed off on the work item.

Let’s do a quick walkthrough of each step. All the steps preferably happen in
a non-local environment, meaning the code was committed and in some dev
or continuous integration environment.

Code has been peer-reviewed and approved by at least one reviewer.

When Rebecca completes writing her code, she submits a pull request with a
code review for someone else on the immediate team to look. The reviewer
is looking for functional correctness, possible defects, and any outstanding
style issues.

Developer and tester have done a walkthrough – risks and scope.

Assign a tester to every story in the iteration, which, by default, means there
are one developer and one tester per story.

QA performed, and issues resolved.

The tester has tested the story using the test criteria and other non-functional
and functional criteria required for the product. No issues reported, or issues
reported and then retested and resolved.

Automated tests locally and in the integration environment
are green.

All test automation for the component/system/product runs locally and in the
integration environment with positive (green) passing results.

Chapter 4 | Build

47

If a particular story is put into the integration environment and passes its
criteria, but other tests fail simultaneously, the story has failed. At this point,
the build broke, and the team must fix it. The other tests may have failed from
another developer’s submission, a network timeout, or other reasons. Test
failure is often a point of frustration for a developer submitting a story that
they know works. Still - it is the best way forward because it keeps the entire
system in sync: it all works, or it’s all broken. This binary state allows
engineering to be confident in either state.

The story is deployable.

There is a difference between releasing a story and deploying it. Releasing a
story means that we have put it into a destination environment of our choice
and confirm that someone can use it. It doesn’t mean it was successful! That’s
because stories in professional environments have dependencies. There are
three items to cover: the deployment process can deploy the story to a target
environment.

First, the code has met the standards set forth by the team. This is knocked
out in step 1 of the DoD.

Second, any database changes required for the code to work are deployed
into the target environment and tested. Why? Because a missing stored
procedure will fail the code.

Third and last, make configuration changes required for the story to function
in the target environment. Think of this as anything stored in configuration
files/databases/systems. For instance, if this story’s function requires a key’s
value set to “true” in the config file, make sure this configuration gets deployed.

The product owner signed off on the work item.

Finally, we arrive at a sign-off. Let the product owner review the work in the
target environment, and when they feel good about it, they will give it a
thumbs up. LIFT isn’t concerned with formally capturing this decision, but
your team can do it however you choose.

 Write Things Down and Document As You Go
No two teams are the same, and different teams, even inside the same
company, are going to operate at different maturity levels when it comes to
documenting and understanding the system. Now, there is no argument that
the best way to understand a software system is to write readable code. But
is that enough? OK, now toss in unit tests that describe the behavior and test
the code, is that now enough?

Patterns of Software Construction

48

Of course not. Why?

Because we live in the real world and not some academic textbook or idealized
scrum fantasy where everyone does everything, knows everything, has the
same desires, and can live via tribal knowledge. Teams are spread out with
people in different offices, work from home, and time zones. Information
must be documented. And, as we’ve pointed out over and over, software
systems are more than the code. If the build environments, deployment
environments, database schemas, and terraform scripts aren’t documented in
some form, then how will the team ever find efficiencies?

Document as you go.

 Eliminate Waste
The concept of waste is highly subjective. The Product Manager may say that
waste is any work that is built but not released. The operations engineer
thinks it’s waste to conduct long releases and manual configuration. And,
finally, the software engineer thinks it’s all the meetings. Table 4-10 below lists
a few different views of waste. So, what is waste?

 Beliefs
It’s all waste when looked at from a given perspective. But turn the view, and
you’ll see just how subjective these concepts are.

The Product Manager needs those meetings because she doesn’t know if the
development team understands the requirements and sequencing. So, this is
how it’s done in her world. The Software Engineer doesn’t choose to avoid
big releases because Operations hasn’t worked with them to decompose the
production infrastructure footprint. And the unreleased software is a fact of
life to both Operations and Software engineering because the requirements
for them change too often from Product Management.

Now, none of this is true. It’s just a perspective. It’s no different than Plato and
his allegory of the cave.

In this allegory, Plato asks the reader to consider people born and raised in a
dark cave, held in place to only face forward. On the other side of a wall are
people who carry objects shown as shadows on the far wall from a fire burning
in front. The people held captive see the shapes cast by flame and only know
these shadows as objects in the world as they have no other experiences.

Table 4-10. An assortment of beliefs

Product Manager Operations Engineer Software Engineer
Waste Unreleased Software Long Releases Meetings

Chapter 4 | Build

49

Next, Plato suggests that one of these people is set free and led up a steep
incline out of the cave and into the sun. The sun burns his eyes, and it takes
time to make out the shapes of the real world as his brain cannot believe.
Given enough time, this individual prefers the outside world’s freedom and
new reality and returns to the cave to tell the others. Upon return, he can no
longer see in the dark, and the captives believe that the outside has ruined his
eyes – and therefore, it would be perilous for any of them to venture outside.
And they all prefer to stay.

Table 4-11 below lists more examples of possible waste in the product
engineering cycle because they do not contribute to the software’s
construction, delivery, or operation.

Teams put these possible waste items in place because of previous experiences
and a need to stay in the cave. Let’s use the example of the meeting again. The
Product Manager states she needs the meetings for a few reasons: gather
status, take questions, and discuss the next iteration. The engineering team
(dev + ops) says this meeting is a waste because they are busy on the current
iteration and don’t have questions; they want to remain heads down. Their
rationale that the meeting is a waste stems from: they are actively working,
and switching in and out of development is a waste of time on its own.

Last year was the Product Manager’s first proper software assignment with a
different development team. The Product Manager did not meet regularly
during an iteration with the team and missed several deliveries that year,
reflected in her annual review. Her experience tells her that these meetings
are critical, and she must push the development team. The meetings are her
cave and fire – the shadows on the wall are real for her.

The lead developer tries to pull her up and into the light by taking her to
coffee and explaining that finishing the iteration is the team’s most critical job,
and the mid-iteration status meetings can wait. But to the product manager,
skipping status meetings is dangerous. Her only experience developing
software products failed without meetings. So, the meeting stays on the
calendar, and everyone attends, begrudgingly.

This isn’t an attack on Product Managers – far from it. Let’s look at the lead
developer.

Table 4-11. Some areas of waste or invisible.

Possible Areas of Waste
Wait time Build times Debugging

Wrong tools Meetings Extra tickets and tasks

Looking for log files Big change, big release Not managing configuration in source
control

Patterns of Software Construction

50

She has been shipping software into production environments for ten years.
A lot of what she has learned and internalized tells her continually reducing
build times will lead to better product outcomes. That may be true to an
extent, but there is a point of diminishing returns. She received rewards for
reducing massive legacy applications build times from 60 minutes to 10
minutes in her previous role. It was a stated goal from her manager and did
make a difference for the firm because that reduction allowed them to bring
on additional teams to make changes to this application to help them in the
marketplace. In another role, the architect approved of reducing build times
as a breakthrough because the firm didn’t have any continuous build and
integration previously.

In the current team, she and the team spend 20 hours a week trying to take
an extra two minutes off an 8-minute build cycle. This building cycle has
several dependencies to bring in, tests to run, and a deployment validation
cycle. The team is one iteration behind, the PM is stressed, and the lead
engineer won’t stop this work because this is what she knows. Reducing build
times is her cave and her fire.

Neither the mid-iteration status meetings nor the intense build reduction
activities help the team ship better software – so they are both wastes. The
team must agree on the waste that everyone understands and fits inside of a
given context. Table 4-12 displays what the team needs to identify and
eliminate.

Table 4-12. Patterns of Waste

Defects First and foremost, get the features correct and working as expected.
Nothing erodes confidence and velocity like excessive defects.

Wait Times This is the time that a team member spends waiting for another. This
could be waiting for acceptance criteria, waiting for testing to finish,
waiting for architecture to finish some service, etc.

Excessive
Motion

Too much motion in a software team is often manual configurations, by
hand deployments, manual testing, or multi-step environment setups.

Overproduction Overproduction happens when a team creates code and services they
do not need yet. It can also encompass overoptimizations, like the data
structure hand-built to handle N varieties of widget types when there
are only three and have been three for the last 20 years.

Underutilization Poor utilization will occur when subject matter experts are ignored by
clever engineers, QA team members aren’t involved in planning, or
developers aren’t shown the big picture and treated like widgets. There
is so much that happens when our people aren’t used to their full extent
and books are written on this every year.

Chapter 4 | Build

51

 Deploy
After going through this evolution a couple of times, a team finds its natural
rhythm. And underlying the team’s rhythm is the constant drumbeat of
“checking-build-deploy” of continuous integration. Now, CI is a standard and
table stakes operation, but cannot be left out. After each developer code
commit (check-in/push) to source control, a build process must kick-off, run
any available tests, and deploy the bits to a development environment.

This environment is how the product, QA, and the entire development team
see the fruits of everyone’s labor and avoids the “works on my workstation”
syndrome.

 Activities Summary
A number of these activities are to be constructed the first time through the
evolution and then used over and over.

•	 On the first time through evolution, create Sprint
duration and lay in sprint calendar timebox activities.

•	 If stuck on a two-week concept without success, try
the three-week calendar in this chapter.

•	 Stick to the activities inside the timebox.

•	 Address all non-functional requirements, in the same
way, each sprint.

•	 Defensive programming, logging, debuggable applications,
and performance.

•	 Adopt and use anti-corruption layers like your product’s
life depends on it.

•	 Adopt and use the LIFT definition of done.

•	 Document critical architecture, functions, and decisions
as you go.

•	 Deploy to a development environment continuously.

•	 Eliminate waste. Every set of activities, including these,
has waste. It takes some focus and some grit to eliminate
the waste, but doing so will save stress, time, and project
injury on the backend.

Patterns of Software Construction

© Stephen Rylander 2022
S. Rylander, Patterns of Software Construction,
https://doi.org/10.1007/978-1-4842-7936-6_5

C H A P T E R

5

Test
Evolution #3

The Test Evolution creates a structure proving the software empirically works,
is accurate, and has an increased chance of meeting a market need. Understand,
testing happens all the way to this evolution, but now it kicks up a notch. LIFT
wants software going to production to be ready for use by customers – not
tested by customers.

Category Description

Target A validated increment of working software with objective, validated test results of
positive and negative test cases.

Inputs A working increment of software from a development environment.

Detailed work items in the WMT with Acceptance Criteria.

Goals for this increment of software.

Outputs A version of software ready for Production.

Visibility Test Cases & Test Results.

Risk Analysis.

Exit Criteria.

The
Win

You have tested, correct, Working Software in a QA environment ready to move
to Production.

https://doi.org/10.1007/978-1-4842-7936-6_5#DOI

54

 The Problem and Possibility
Planning, constructing, building pipelines, and deploying software is a
tremendous amount of work, and by the time you get to "testing" the
software, you and the team are exhausted. Plus, pressure is constantly
mounting to ship, show progress, demo, and meet deadlines you probably
didn't agree to.

Additionally, we have confusion around simply what the software is meant to
accomplish. It's not unusual for an engineering team not to know the customer:
an internal team, a support team, an external team? This is all a recipe for one
or more of these:

 1. Catastrophe

 2. Stress

 3. Make-it-up-as-you-go testing

None of these scenarios end with a happy team or customer. The more chaos
around what functionality to test and how to test it, spills more oil onto the
floor for people to slip around on. Testing software leads to more arguments
and discussion inside of a team than in any other part of the engineering
process. Why? Because it's not clear what to do and everyone has an opinion.
It's easy to blame testing and testers.

 What do you really want from QA and testing?
Most people reading this chapter in this book are not QA professionals. The
QA professional lives on the fringe of today's modern business software
development ecosystem. After all, the coding boot camps of our timeline
don't include the outputs of QA engineers. Nor do our universities specialize
in software testing, let alone what the industry calls Quality Assurance. Teams
can enter testing phases casually and not be clear on their outcomes. Once
you are clear on testing outcomes, then the steps fall into place, and friction
is reduced.

 Possibility
The possibility is simple: The test cycle is clean, consistent, non-duplicative,
and removes risk and stress for everyone. To get there, you must imagine a
better working process and environment and then take concrete steps to
get there.

Chapter 5 | Test

55

See, LIFT is not concerned about Quality Assurance certificates. LIFT accounts
for testing and getting quality into products and products to customers. Why?
Because we want software. Building software, testing software, shipping
software, and operating software. Other methodologies in the middle of the
development process only serve to distract and disorient the intended results.

Now testing for quality and prescribed function and non-functional
characteristics is fundamental. LIFT has you building these characteristics into
software from inception with Plan and into Build evolutions. This type of QA
is the responsibility of the entire team (engineers, testers, ops, product) with
an internal group of people responsible for testing and communicating risk.
This group identifies the risk, shares the risk, and may function more in a
quality control manner. Any decent leaders want their QA team (a group of
testers) to speak up when they see problems with

•	 Functionality

•	 Reliability

•	 Usability

 Principles
Five key principles lay the foundation for the Test evolution:

 1. Document Test Cases & Acceptance Criteria

 2. Maintain Reasonable Non-Functional Requirements

 3. Keep the QA environment clean

 4. Set and enforce Exit Criteria

 5. Start testing before you start testing

We will discuss each of these, along with the supporting activities in the rest
of this chapter on Test. The following is a brief rundown of each principle.

Example user story for the following principles: The story adds new multi-currency
calculation to a user-entered textbox.

 Test Cases
Any given piece of functionality has more than one path for a user (or process,
API, etc.) to take. Therefore, any user story needs multiple viewpoints, which
make up the test cases.

Example: This requires test cases validating the currencies supported, null, zero, min-max, etc.

Patterns of Software Construction

56

 Acceptance Criteria
The current king of all test criteria is the vaulted, esteemed, much beloved
Acceptance Criteria. Acceptance Criteria is part and parcel with the agile
concept of user stories. There is Acceptance Criteria for every story that
goes into your WMT and with it, it is impossible to say if the story fits the
needs intended.

Example: When a user enters a numeric value in the currency field, the value
will automatically be reformatted to the currency set in their user preferences.
The currency will be exact to two decimal places.

 Keep the QA Environment Clean
This can be rewritten to: you should be able to eat off the QA Environment.
The cleanliness of this environment speaks volumes to the team's commitment
to make testing successful. Messy data will equal messy, invalid, inconsistent
results. And dirty builds and manual configurations lead to more unknowns. If
there is one thing you want to control in any experiment, it’s the unknowns.
And testing is one big experiment full of hypotheses and results. For instance,
do not use the development database for the QA app server. Unfortunately,
this needs stating.

 Set and Enforce Exit Criteria
Going back to the idea of “why am I testing anyway” comes this rough idea of
exit criteria. See, it’s easy to write some acceptance criteria for this example
user story. Then map out some test cases, like null values, gibberish, form
validation, etc. Exit criteria is taking all the work items that rolled into QA
and setting clear criteria on when the product is good enough to move
out of QA.

Not such an easy answer, is it?

Here the team must get specific around defects, product owner decisions,
and the non-functional requirements so that everyone knows what done
means in QA.

 Start Testing Before You Start Testing
This principle means that the build that enters QA can’t be “thrown over the
wall.” The developers must do their best to test at the unit level (function,
class, module, API) and have received some early feedback from the product
owner and hopefully a QA team member. The code entering can’t be littered
with small issues as that will consume all the test cycles and everyone loses.

Chapter 5 | Test

57

If the team doesn’t start feature testing around acceptance criteria and
non-functional requirements before you start QA testing, the likelihood
for failure goes up dramatically.

 The Testing System
The diagram in Figure 5-1 shows testing starting before entering a QA
environment. This is the world's most straightforward development and test
cycle. Code, commit, review the commit, deploy to a development
environment, and run automated tests. For some teams, if they implemented
only this cycle right now (Figure 5-1), their ROI from reading this far is
complete.

Figure 5-1. Testing that is being done in development and coming into QA

The Testing System is composed of processes and activities, just like PLAN
and BUILD. As we know, every system has a beginning and end, so we want
to start there. We’re going to get into details on all of these, including the
practices inside the activities. To begin, in Figure 5-2 is the high-level sequence
of activities making up TEST.

Figure 5-2. Steps inside of the QA environment and exit criteria

You’ll look at this and maybe think “that’s a lot of steps,” and like everything
in software, it is. It’s challenging, detailed, and time-consuming work. Now it’s
clear though.

Patterns of Software Construction

58

For software to get to production in a state that works well, you’ll have to
walk a journey. And even if you decide you don’t want to spend this much
time in TEST, these activities aren’t going away. What you now have here is a
clear sequencing of the activities for success. Let’s get into them.

 Activities
 Prerequisites
To make things simple, most of the prerequisites for testing activities are
outcomes from PLAN and BUILD since LIFT is evolutionary, building on
previous evolutions. Still, there are some immediate needs that we will double-
check here.

 Acceptance Criteria
What will the test team test?

That's not meant to be an esoteric question. Really, what exactly are the
testers going to test? Sure, they can draw up test plans (we'll get to it) and run
regression (if you're lucky enough to have this), but what are they going to do
during this iteration? Where does the direction come from?

It comes from the Acceptance Criteria (AC) specified in the work item in
your Work Item Management Tool! Every work item (e.g., story, tasks) needs
AC so that

 1. The developer has a target for what she is developing

 2. The tester has a target for what they are testing

 3. The product owner agrees on the outcome

Thus, the beauty of acceptance criteria is its tri-purpose: build the feature,
test the feature, and validate it. Once the tester has the AC, they can build
upon that, add test cases, increase specificity, and communicate clearly with
the developer and product owner.

 A Build
Stating the obvious is preferred to omitting a requirement, so here it is. The
Test evolution needs a new build of the software in their environment. The
need for this software is then laid out further in the next pre-requirement,
Environment Entry.

Chapter 5 | Test

59

 Environment Entry
To maintain your sanity and to provide clarity to the test team, you’ll need to
erect some guardrails around changing the QA environment. Why? Because if
team members are testing in the QA environment on build 12.3.2 and then
build 12.3.3 is released over the top of it, the consequences could be

 1. Features under test suddenly change

 2. Functionality supporting features change

 3. Dependencies supporting functionality, supporting
features change

Basically, changing the test environment without the express permission of
those testing can generate a cascading chain of events that won’t end well.

Figure 5-3. QA Environments

Figure 5-3 introduces an ideal state. QA is locked down, meaning that it can
only be changed with expressed acceptance from the testers. You may ask if
this could be a regularly scheduled event, and the answer is yes, but know that
scheduling deployments only builds rigidity and non-required wait times into
the process. The best time to deploy to QA is when a round of testing is
finished, or something is so broken that the testers want a new build as soon
as something is deployable.

The QA environment is then used to test with all the vigor and energy
possible. This is where we push automated tests against the UI, deep functional
tests against APIs and endpoints, run load and performance tests, and wrap it
all up with regression test suites.

All other early-stage testing should be happening in the development
integration environment via automated means.

Patterns of Software Construction

60

 Exit Criteria
The last pre-requirement to enter the Test System is a common, documented,
set of exit criteria. The exit criteria are the rules and covenants laid out
describing the events and successes required to move the build of software in
QA to the next environment in the chain.

Exit criteria is very subjective to the product being built and the team doing
the work. For instance, a team could have exit criteria like the following table
for a basic stock trading application.

Order Criteria

1 All automated functional tests against the UI and Core trade types passed.

2 There are no new WARN or ERROR messages in the logs.

3 Every work item in the WMT and in the current build have their Acceptance Criteria
accepted.

The exit criteria are not a release to production – it’s just the team's
requirements to move to the next environment, so it’s lighter weight than
what it takes to go live. Some product teams may have three items in their
exit criteria and others may have a dozen – what matters is taking the time to
define the criteria to protect the next environment, reduce false positives,
keep the WMT clean, and increase the chances of success for going live.

 Preparation
It will require some upfront work to get into the execution part of TEST. Here,
there are three activities: Scope of Impact, Test Case Preparation, and Risk
Analysis. These activities are a good example of actions that can be performed
at the same time as development and deliver the overall effect onto the
release.

 Scope of Impact (SOI)
We look at the total impact of the changes to the system and from there
identify how wide the effects may reach (Figure 5-4). Think of it like an
explosion with a blast radius. For a small explosion, the radius maybe 10 feet.
But for a large device, the radius may be 100 ft, and as we know, an explosive
used in combat could be exponentially more.

Chapter 5 | Test

61

Figure 5-4. Scope of Impact

That is what changing code and configuration can do – ripple out and blast
away dependencies and functionality without intention.

Wondering what this means? Let’s look at an example.

The purple team needs to change the Pricing API for iteration 24. There are
about a dozen work items in the iteration composed of small updates, some
configuration from the security team, and two of the work items reflect
adding a field to the API output. For context, the API has eight different
end points.

Work items were written a few weeks ago as the timing of this change is
important for customers, so the Acceptance Criteria is present. For the most
part, the values from this new field show up in four places in the product.
However, pricing data from this API is displayed in 32 different locations
across multiple screens, front-end components, and services. Pricing is
displayed to three different types of users: public, logged-in, and paid users.

The question is, what is the blast radius of making this change?

Right away, there are questions like the following that may or may not have
been in the AC:

•	 Is this data point only for paid users?

•	 Is the data point then hidden for non-paid users? Or is it
never mentioned?

•	 What about free users? Geez, do we have a matrix? Who
has this?

•	 What happens to components calling the API that expect
the new field?

Patterns of Software Construction

62

•	 What happens to components calling the API that do not
expect a new field?

•	 Can we identify and be sure that there are only 32
locations showing pricing data?

•	 How many services call this API?

•	 How many source files call this API?

•	 Does the new field add to the execution time of the API
or network response time?

•	 What if this field is null?

•	 What if this field is non-numeric?

•	 Will all the web applications that comprise the product
need updating?

•	 Can we change that old enterprise Spring 1.0 Java app
that also shows pricing for internal custom support?

So, in this example (see Figure 5-5) the Scope of Impact (with the keyword
being “impact”) is growing. At first, it’s just a new field to an API response. As
a developer, this is a trivial change and callers should not care. But just because
a calling app should not care doesn’t mean there isn’t a needle in that haystack
that will break when it receives 11 fields instead of 10. And, as the exploration
continues, the team sees the full scope across many applications, services, and
scenarios which can affect functional and non-functional requirements.

Figure 5-5. A small change ends up having a large impact

Checklist of SOI:

•	 Where is the change in the software, module, component,
API, service, database, network?

•	 What is dependent on the item undergoing change.

•	 Will the change alter existing functionality?

Chapter 5 | Test

63

•	 Will the change affect performance? Throughput or
response time?

•	 Will the change alter security or user management?

•	 Will the change hinder other user functionality, roles, or
internal processes?

Scope can get out of hand...

Performing the SOI analysis can help identify issues with the acceptance criteria (not
enough), the feature, or sometimes even the general request. Let’s use the preceding case
some more. Pretend that this new field for the API was to be retrieved from another
system. And this system was external to the team's Pricing API. Wow. Now, the impact has
just doubled or tripled and the security team, infrastructure team, devops team, and
possibly legal need to get involved.

Remember... what looks small can eventually, through some analysis, turn out to be very
large.

 Test Case Preparation
Test cases are not scary. They are highly repeatable documents mapped to
Acceptance Criteria and existing known paths in the software. The QA world
has its own language and LIFT neither tries to rewrite this language nor does
it actively try to adopt it. Instead, LIFT is concerned with common sense
approaches to testing so that teams have what they need to succeed.

Test Cases commonly come from one of these two places:

 1. Someone writes Test Cases with the iteration based on
the Acceptance Criteria from a work item. Why? Because
the AC is the blueprint, and the Test Case is the objective
schematic plus an explanation of how the testers will
perform testing.

 2. A bunch (anywhere from 10 to 1000) of test cases exist
and came with the team you have recently inherited or
joined. Where this came from is a mystery that doesn’t
need solving.

As shown in Figure 5-6, when the work item has AC, someone can write test
cases off that AC. So, if the work item doesn’t have AC, then it’s not testable.
If it’s not testable, why are we working on it. And if this is really the case, it’s
your job to make a stink about the situation until it's resolved. It is not
professional to release software that is not testable. Just stop and figure it out
with the team.

Patterns of Software Construction

64

Figure 5-6. Work items and criteria

Write test cases as documents, wiki pages, somewhere in your WMT, or best
yet, in a test case management tool. All in all, getting the test cases detailed
out in a wiki and linking it in the work item is a rather efficient scenario. But
if you are moving towards the need for test suites (which is just a fancy way
of discussing an ordered grouping of multiple test cases) you’ll want a tool.
Still, for LIFT, pickup whatever works (Google Docs, wiki, etc.) and use it until
it doesn’t work anymore.

A test case contains, at a minimum, the criteria in Table 5-1.

Table 5-1. Test case minimums

Item Details

Preconditions The conditions in the system that must be true to move into the test.

List of Steps A detailed list of repeatable steps.

Expected
Results

What is expected to happen after each step, after the conclusion of all the
stops, and often what we expect not to happen.

Positive results. Negative results.

Effort Just like a development story, how much effort will it take to excuse this
test case and a collection of test cases that comprise a feature.

Priorities Some test cases are more important than others, so make prioritization
clear to create efficiency in the system.

This is all well and good and it’s clear from the criteria that testing a feature is
repeatable and consistent. Now let’s look at one test case example based on
our fictional Pricing API change. This test case is all contained on one page,
but this could change depending on your existing systems. Don’t have a test
case management tool? No problem, then do the one pager wherever you
write documents or keep a wiki.

Chapter 5 | Test

65

Test Case

Test Case ID: PRICE-23 Product: Kinesis Finance App

Work Item: 52619 Functional Area: Pricing

Effort: 16 hours Priority: High

Summary and Notes

Verify that the new field from the PricingAPI, called “Trend” is displayed on the home
screen for logged-in, paid users.

Note: we will need to have test cases that cover the matrix provided by the Product
Owner for the three user types: public, registered-logged-in, paid-logged-in. Also, make
sure we have test cases that cover our full security types.

The AC is in the work item and makes sense to build this test case.

Pre-conditions

 1. The current user is logged in and flagged as a paid user.

 2. On the home screen.

 3. The feature flag is toggled on to return this field.

Steps Expected Results

 1. Navigate to the homepage. The homepage shows up for a public user.

 2. Click login. Login widget appears.

 3. Go through login steps (known). Success.

 4. Return to homepage. --

 5. Look at the pricing component on
the right side of the screen. Verify
that the field “Trend” is present.

Trend has a value. Any value.

 6. Verify Trend is numerical and not-null. The Trend field is in the table for each security
in the list and is greater than numerical, greater
than 1 and not null/empty.

 7. Manually call Pricing API with security
ID and check that the Trend there
matches what is on screen.

 8. Refresh the screen and perform step
6 again.

Patterns of Software Construction

66

The test case is now complete to test a logged-in, paid user to see the new
API field. The test steps describe the manual process that a human being
performs. This doesn’t always scale. It sometimes does, if the functionality is
more complex to build than to perform, or if the test isn’t required often. The
industry and you need more of this work automated, scripted, and
programmed. The good news is that this test case is easily transferred into an
automated test case – each step here maps to some function or process an
automated tester or developer on the team can write up. And like a few other
topics we’ve touched on, this is a massive area, and we won’t get into many
more details on how to automate a test case. Just automated whenever
you can.

Test Automation Anti-Pattern

It sounds abundantly simple to automate test cases. You know, just “automate” it. But what
does that mean?

For the last twenty years, this means writing code to test your code. In some cases, the
tool for doing the automation records the application and is generating code on the
backend to re-run it, so more code.

Or teams have been sucked into the UI automation rabbit hole. There are a whole bunch of
open source and commercial products in this category, but we will just pick on one:
Selenium. You can write a ton of code to walk through and exercise your UIs. Beware,
because

UIs change

Tests break

And this is a costly scenario. A very costly scenario. Each time a UI changes, the tests must
be updated. And the developer of the UI change has to move around a bunch of hidden
HTML tags so that Selenium code can catch it. See, tools like Selenium need assistance to
know what to do, navigate a browser's DOM, and clock the right elements. There is no
magic.

But what if the Selenium code isn’t very good? What if the programmer of the code is just
learning how to write test software or it’s a byproduct of some other initiative? What if the
amount of code it takes to test the change requires more maintenance than the feature
itself? Unless the feature is mission critical or safety critical (think healthcare) the return on
investment is negative.

Writing more and more code to test more and more code is an explosively expensive
situation. The team won’t realize the consequences in the checkbook, they will realize the
pain via a decrease in velocity and slowing of feature releases and big fixes. Then later, the
accountants will shut it down.

Chapter 5 | Test

67

 Risk Analysis
Looking at the Scope-of-Impact and the test cases we have, what is the risk
that these changes will

•	 Not deliver on time

•	 Fail testing

•	 Cause production incidents

•	 Affect users or systems negatively

•	 Open other risks through dependencies

•	 Fail a security audit

The Scope-of-Impact on this work showed a large area of scope and possibly
significant impact in several places that aren't changed or tested often. Without
even writing more test cases (including the one earlier in this chapter) the QA
team members note there are at least another couple dozen test cases for the
website alone. Baking in a guesstimate for the other services, screens, and
internal tools affected and the number of test cases nears 50.

Communicate the Risk of a given work item or feature to the development
team, other testers, and product managers using the following matrix. Every
work item receives a Risk Level, and you should expect most to be “Standard”
level. An iteration or release loading up with numerous Explosive or Flammable
items is a clear indicator of danger.

Imagine a stack of boxes at your front door. Now imagine them again but on
half the boxes put Hazmat stickers – worried? You should be, that’s why we
measure risk.

Risk Description

Explosive This is the highest, most critical risk level. The feature could explode and
cause damage around the feature’s intention.

Flammable This second-tier risk level means that the feature could cause some significant
issues but is solvable.

Standard The lowest risk level indicates there is nothing unusual about this item.

Risk Analysis is about getting ahead of pitfalls and failure points. The process
moves feature development and testing from chaotic to organized and from
macroscopic to microscopic. Do not leave details to accident; instead, design
the software, features, test cases, and test plans for success up front through
thorough test plans.

Patterns of Software Construction

68

 Execution
Now you’re ready to execute. You enter this phase of Testing ready with:

Acceptance Criteria A Build Environment Entry and Exit Criteria
Scope of Impact Test Cases Risk Analysis

The preparation work is paying off already because you can start testing with
a level of confidence. Before we get after it, please remember that these tests
are not Unit Tests. Those were accomplished by the software developers
during development cycles. Unit test coverage doesn’t enter this conversation –
everything here is around integration and functional tests, for example,
software testing software, not code testing code. This distinction is critical to
avoid conflict and confusion.

LIFT TEST is about software testing software, not code testing code.

 Automated
It’s the year 2021 at the time of writing and most of the test cases brought to
this phase are implemented with software automation. There are still manual
cases in most business software, and we will cover that a little later. The work
now is all “doing,” meaning that it’s putting hands to keyboards, running
through scenarios, and gathering feedback from other testers, subject matter
experts, and software developers.

Automating a test case means:

Implementing the testing scenario such that the computer performs the
activity and captures the results.

In business software, there are only two major scenarios you’ll have to
deal with:

 1. Testing a user interface

 2. Testing the backend of a system (which maybe the entire
system, e.g., sans UI)

 User Interface Testing
The depth of automated testing is deep. Like, 10,000 Leagues Under the Sea
deep, so we must keep this at surface level to avoid drowning the rest of this
chapter. Here are the solid options for building automated UI testing (web
testing):

Chapter 5 | Test

69

 1. Selenium, an open-source framework with much acclaim
and adoption, requiring software development in a
language like Java or JavaScript

 2. Cucumber, an open-source framework geared towards
writing human-readable acceptance tests

 3. Watir, based on the Ruby and back-ended with Selenium

 4. Modern UI adaptation with Machine Learning and AI like
Mabl or RainforestQA

The choice is very subjective. The best LIFT can offer for a recommendation
are its principles: simplicity, consistency, repeatability. Use these principles
when reviewing and choosing a tool to assist you in execution.

 API and Backend Testing
The world of API and backend testing is broader than UI testing, but the
choice of one tool over the other is not as severe. Here are three tools that
can fit the bill any day of the week:

 1. SoapUI from SmartBear Software

 2. JMeter, an open-source favorite for performance and
load testing

 3. Postman, which is the current reigning champion of API
development and testing

Use the same principles when choosing an API testing tool as choosing a UI
testing tool. Each of these three tools brings something unique to bear and
each will help you succeed. So don’t overanalyze – try two and keep one.
Accomplish this objective by timeboxing the activity to two weeks and have
the testers do the selection work. Once the testers have selected their
preferred tool, bring it to the developers and get their support. Why? Because
API testing often needs to get pushed left towards development, so the
developers must be comfortable using the tool.

The purpose of testing is to ship software, not to generate QA reports or
discuss IIST, CSQM, or any other QA purpose-built acronym. Shipping
software that works is what matters.

 Manual
Performing manual tests is OK. No matter what you’ve read or heard from
peers, doing some manual testing is not an issue. Why? Because the world
is messy!

Patterns of Software Construction

70

Figure 5-7. Net total code in the system

Figure 5-7 is a 10K foot view of a 10-year-old home builder’s item management
system. This builder is required to keep track of all building materials used,
their manufacturer, those items' source of origin and the blueprints/plans they
are associated with. The box in gray is some new code the team added to
support building some modern home prefabricated inventory – basically, hold
inventory from another supplier before it comes to job sites but will never
enter physical inventory. The team added a new API interchange from this
item management system to the new vendor to accomplish the functionality.

Then there is another handful of user modules and code that everyone knows
changes annually as some relationships change and material manifests improve.
And next are a significant amount of database interfaces, because, like so
much business software, version one was a direct connection of user interface
to database and grew from there. Finally, there is the box on the right –
unknown unknowns, which is a fancy way of saying “everything else.”

The team has two developers in Ohio, three developers in Mumbai, two QA
testers also in Mumbai, and a subject matter expert from accounting in Ohio.
No single individual on the team was present when the system was built, and
the longest tenure is five years. The chance of inheriting a system with even
30% UI or API test coverage is close to zero. It’s not bad or good, it’s just
the truth.

Therefore, the team is changing about 10% of the overall system annually and
currently adding an overall 5% net new set of code for the new feature. They
cannot reasonably write test automation over the entire system with the
team size they have. However, they can write their new test cases with
automation software and keep regression testing the rest manually.

And this is the trick: automate aggressively on the new features and cover the
old, slow changing features with manually executed test cases. Eventually,
you’ll make changes to the slow changing pieces and can write the test

Chapter 5 | Test

71

coverage with automation. Or, frankly, probably not. Those slow features will
not change and when they do, it will be a blue-moon effort and possibly still
not worth the time to automate.

Automation is happier with friends because automated tests build up into test
suites and groups of test suites yield power of known knowns. Keep moving
to exponentially grow automated test coverage and the manual testing won’t
really matter.

 ■ Anti-Pattern Warning: We can’t automate that Do not let old-timers (long tenure) on a

team convince you as a leader on what tests can or can’t be automated. For instance, if someone

says: that function cannot be automated (coverage with an automated test case) then investigate

that. Why are they saying this? Is there a technical hurdle? Is there a knowledge gap? Skill gap?

Attitude gap?

The only time not to move towards the automation of test cases is if the effort is prohibitively

expensive or won’t have a net positive return on investment.

 Realtime Reviews
Significant activity happens during the execution phase of Test as there is also
development activity concurrently. Realtime Reviews is more a strategy than
an activity, as you’ll see. As the tester is writing the code for the automated
test case (or performing the manual test run for the test case), check in with
the product manager. That’s it.

Have the product manager review the testing progress, see if the outcomes of
the tests really align with her acceptance criteria. Help the tester refine or
broaden test case criteria so the results are more expressive, purposeful, or
lending to a broader strategy.

Review the progress of testing and test cases with the product manager and
other testers.

 Conclude
You reached the end of this evolution! All the test planning paid off and the
test execution went well. You have automated the new test cases and kept an
eye on the old test cases requiring some manual execution of updates. Now
is the time to see what happened.

Patterns of Software Construction

72

 Test Summary and Reporting
The goal here is to identify and share the minimum amount of data from
testing required to adjust and judge the direction of the project. For example,
which way is the wind blowing – out to calm waters or towards the jagged
inland rocks?

To conclude testing, you first need the following raw data set:

•	 Total # defects found

•	 Defects found with critical risk

•	 Total # new test cases created

•	 Total # tests run

•	 Total # of tests cases to execute

Then use these to draw the trends in some type of visual format (line charts
are simple):

•	 Defect Rate per iteration/release

•	 Test runs

•	 Pass/Fail rate of tests

And finally, summarize all of this for easy consumption by anyone on the team
and a sufficiently technical stakeholder with:

•	 #Manual vs. #Automated Tests

•	 Test Type #’s for API, Data, and UI tests

•	 Summarize and then narrate the trend in words, for
example, did these iterations’ results look better (more
efficient, higher success rate, etc.) compared to previous
iterations?

Here is an example of it all rolled together. Notice this is focused on easy-to-
understand numbers that the team can then use to make changes with.

Chapter 5 | Test

73

Testing Summary

Iteration: 23 Product: Kinesis Finance App

Features Planned: 5 Test Cases Created: 12

Tests Runs: 57 Test Cases to Execute: 89

Defects

Total Found 8

Total Critical 1

Defect Running Total 34

Summary

The quality judged by the number of found defects in this iteration improved on what we
saw in the past two iterations. Additionally, we made up for the test run gap by executing
more of our planned automated tests cases.

This sprint, we still had 20 manual test runs and totaled 37 automated. This means we
added seven new automated tests which is the trend we want.

About 65% of the overall test runs were on API, a few on data, and the remaining on the
UI.

The team thinks we could plan a couple of those manual test cases to automated
conversion next sprint and we are requesting allocation time for this.

Trends

Patterns of Software Construction

74

What we discussed previously is the preferred output to the testing evolution.
There are times when a team's Testing and writing ability just isn’t strong
enough to provide the narration. When that happens, and you need something
even simpler, use the following template. This doesn’t provide the level of
detail preferred to adjust, but it doesn’t keep transparency high.

Description Value Findings

Features Planned 5 Four of the features released to production. The last feature
is still in testing and not needed in prod for another month.

Test
Cases
Ran – Manual

20 All manual test cases were run.

Test
Cases – Automated

37 98.3% of all test runs passed. The remaining were verified by
QA/Dev/PM as good-to-go.

 Performance
To avoid ad hominem assaults caused by preference, LIFT is concerned about
performance, but not for most teams. Only a mature team can take on
performance, so, if your team can achieve the TEST evolution, along with the
other five evolutions, then performance testing is on the table. If not, the
focus should be on progression, continuous improvement, organization,
discipline, and details.

 Activities Summary
A number of these activities are to be constructed the first time through the
evolution and then used over and over. Pay special attention to the Test
System – Preparation, Execution, and Conclude.

•	 On the first time through the Evolution, take time to
understand and communicate the Test System to
team members

•	 Next, run through all the Prerequisites and make sure
you have them, or define them now:

•	 Acceptance Criteria for all Work Items

•	 A Build in the QA environment

•	 Clear Exit Criteria (governance that allows the build
to leave QA for another environment)

Chapter 5 | Test

75

•	 Prepare

•	 Scope of Impact

•	 Test case preparation and writing

•	 Risk Analysis

•	 Execute

•	 Build and run automated tests using test cases
covering the UI, API, and data if required

•	 Perform manual tests and capture results

•	 Conclude

•	 Double check the stories with passing test cases;
also pass the Exit Criteria to promote the build

•	 Generate end of testing report; include test trends

Patterns of Software Construction

© Stephen Rylander 2022
S. Rylander, Patterns of Software Construction,
https://doi.org/10.1007/978-1-4842-7936-6_6

C H A P T E R

6

Release
Evolution #4

The hard work of planning, building, and testing an increment of software is
now complete – it’s time to release it! The Release evolution pushes the new
software from your pre-production environment to production and available
for customers to use. This is accomplished using the tested software and then
applying some lightweight release activities to it. These are not difficult; they
are easy steps like using a checklist, communicating during the release, and
validating functionality at the end of the deployment. Using this sequence of
activities means that everyone knows what to expect every time.

Category Description

Target Customers can use the new version of software in the production environment.

Inputs 1. A working increment of software from the test environment

2. List of known issues

Outputs 1. Software in Production

2. Ignition Launch document

Visibility 1. Release checklist

2. Release activity play-by-play

3. Production system validation

4. Monitoring Systems

The
Win

The software is in production, passing all automated tests and/or manual
validation, and is clear on all monitoring systems.

https://doi.org/10.1007/978-1-4842-7936-6_6#DOI

78

 The Problem and Possibility
Releasing software is riddled with complexity and unexpected consequences.
It requires many people in many roles and doesn’t usually end with smiling
team members.

 Problem #1 – The Act of Releasing Software
Is Chaotic
Have you ever had a team of exhausted engineers, testers, operators, and
product managers at the end of a release? I have. And many, many teams
across our industry have, so if you’ve not you are either (1) in no need of help
or (2) lying to yourself. Because so many teams’ releases are chaos.

Well, maybe the act of getting the software physically moved to production
isn’t always an issue, but everything after that. The question is: what happens
next? Just walk away. Have someone “login and validate”? Seriously, this is
2021, and that is so 2001.

I assert that releasing software for some teams is so stressful, so chaotic, so
full of dread that people burn out just from this last step. And this is a savage
shame, because the act of releasing does not return value anywhere like the
creation of new features does.

 Problem #2 – You Lack a System to Predictably
Deliver Solid Releases to Customers
Your people aren’t burned out from software releases? Well, excellent, you’re
winning. But it’s still messy? It still takes more time than is intended and
generates excessive noise in the teams and stakeholders. How about the
notification that you send out saying “The Foo Bar System will be unavailable
between 9 and 10 PM ET for maintenance”?

We all know there isn’t any maintenance! You’re releasing software and it’s
unpredictable because you don’t have a system. Again, not stressful out of the
gate, but that’s because the team is masking it by buying chunks of downtime
every month. This too is not sustainable. Just wait until the FooBar System
needs to be integrated with SalesForce and it can’t go down. Then what? A
two-hour “maintenance” window?

And frankly, what the heck is software “maintenance”? Software doesn’t need
an oil change, or its tires rotated, so this is all just a friendly lie we tell
ourselves.

Now that you know these problems, let’s look at some of the possibilities on
the other side.

Chapter 6 | Release

79

 Possibility #1 – You Let Go of OK and Move
to Great
For years, you’ve probably suffered from awful on one end and merely
acceptable releases on the other. The nights of running database scripts,
deploying some code, and then trying to test it all. Everything on this scale is
mediocre.

This is what we call OK.

The possibility is great releases. And what contributes to a great release? You
know exactly what is going to move to production, how it will work, have a
plan if it fails, full visibility of the process, and most importantly, feel confident.

Yes, feel. This feeling of confidence is not false or invented – it’s present from
the work completed.

 Possibility #2 – Releases Are Non-Events
Think about it. So many software releases are full of stress and mishaps. But
why? Software teams spend weeks, months, or sometimes years to build a
new increment of software... and then the most important piece, deploying it
to run for customers to generate revenue, and the whole stinking thing
falls apart.

Really. It’s a disgrace. Thousands of human hours of planning, managing, coding,
testing, and configuring and then the release is coordinated the day before and
goes off like rollerblading downstairs – just ridiculous and bordering
unprofessional.

Imagine if the release were just the last step. Another part of the development
cycle that was planned thoughtfully, coordinated with vigor, and executed like
a code check-in. That’s how it could be.

 Principles
Three key principles create the foundation for the Release evolution:

 1. Write it all down.

 2. Rely on automated tests.

 3. Not everyone can be in charge.

Patterns of Software Construction

80

 Write It All Down
Like so many parts of LIFT, this too is straightforward – if you want to get it
done, write it down. Consider the analogy with how people use paper-based
planners and what happens with the anxiety and stress of a workday. We will
use Sarah for our example, so with her, two things happen:

 1. When she writes her day’s plans down, anxiety (about
the future) reduces, because it’s clear what the plan is for
tomorrow and the day after and, quite possibly, the day
after. Are there changes? Yes of course. But she knows
what must go and what can stay.

 2. Stress (about right now) reduces because it’s clear to
Sarah what she needs to do now.

How significant are these changes from writing her day down in her planner?
Massive. Anxiety and stress are killers! And they run rampant inside of
software development and operations teams, so reducing these in any way is
an opportunity not to be missed.

But that’s not all. See, Sarah will also pick up some of these key characteristics:

 1. She’s more motivated. Since her mind is clear from the
noise, she has focus and this focus is what individuals and
businesses want from their team members.

 2. She’s more positive. If you reduce anxiety about an
activity, make the activity easier, and increase motivation,
then you would feel better too.

A software release is often like conducting an orchestra – releasing many
different parts of a system from the database through the UI – and these take
planning. Sarah writes her week down. The conductor has the sheet music
and her orchestra positioned. It’s all planned and written down.

 Rely on Automated Tests
Pretend that you had to calculate your US Federal IRS Tax Return for the year
by yourself (maybe you already do.) Now, here are your options:

 1. Get out your own spreadsheet or calculator and do all
the math across the 20-200 fields you’ve entered data
into. Then take that number and put it in the final box
and tell the government this is correct.

 2. Or plug all those same numbers into a piece of software
that will automatically calculate the final number on
your behalf.

Chapter 6 | Release

81

OK, all but the masochistic chose option #2. But, for the stubborn among us,
let’s say you chose option #1. OK, no problem. But we’re going to change the
input. Now, you must do this same manual calculation for 10 IRS Returns
today. And at the end of the month, you will have to do this same calculation
for 500 IRS Returns.

At what point will you want to automate the process by letting the machine
do the work. Therefore, computers were invented – to “compute” results on
our behalf.

Take this reasoning to its logical conclusion and it’s clear that manual testing
every release is literally insane. It’s repeating the same old, decrepit like of
thinking that got us in the position where releases fail regularly.

But wait… what about all the testing in the Test Evolution?

Automate. And rely on that automation.

 Not Everyone Can Be in Charge
When everyone is in charge, no one is in charge. And this means imminent
failure for a release. Imagine this exchange on the night of a release:

Sarah: “Bill, go ahead and run the DB update scripts.”

Kanna: “Sarah, go ahead and run the service deploy.”

Project Manager: “What? Which comes first?”

This lack of coordination leads to exponential problems when the situation,
like a release, is timeboxed. It comes down to “going off-script,” which we will
go over later in this chapter.

 The Release System
Like everything in Lift, we are dealing with a series of activities which form
themselves into systems. Activities into processes, and thus into systems.
Figure 6-1 shows the basic left-to-right release system. The system is made up
of the following series of activities:

•	 A document to describe what is in the release

•	 A checklist of things to check

•	 A script describing the order of activities during the
physical deployment

•	 The deployment itself

•	 Validation of the deployment

Patterns of Software Construction

82

Combining all these activities constitutes a “release.” A “release” is not the
act of deploying software; no, that is deployment.

A release includes all the activities to ship an increment of software into
production. There are even more parts of some software releases, far beyond
the scope of this book, relating to product management, client communication,
release notes, and various business processes.

The critical item to remember for this chapter is that a deployment is a
physical act of moving software into the production system, and it’s part of a
release, see Figure 6-1. Think of it like deploying version 2.2 of the Foo Service
as part of our release next week.

Figure 6-1 described the 10K foot view of a release. Figure 6-2 breaks down
the activities across three distinct and serial phases: Preparation, Execution,
and Validation. This pattern is used over and over in generating processes that
fit into systems.

Figure 6-2. Overview of the Release System

The preparation phase is critical when preparing a release. Understanding
what you have, what you are going to do and having confidence is just as
important as automating a physical deployment – or maybe even more so.

Figure 6-1. Overview of the Release System

Chapter 6 | Release

83

Which would you rather have:

 1. A house builder shows you their detailed build plan
before they start construction.

 2. A house builder tells you they will have the house done
quickly and don’t sweat the details.

A house is a big investment – you want to know there is a plan for it!

A release is not a deployment, rather a release has a deployment.

 Activities
Now that you understand what the overview of a release looks like, it’s time
we dive into the activities.

 Ignition
Starting the ignition on a rocket doesn’t cause it to lift off the ground. No,
instead lighting the ignition gets the rocket primed and ready to launch – the
ignition is now on. This is why the name of the initial release document is Ignition.

The Ignition document covers the scope and definition of the upcoming
release. These are the sections of the document which we will dive into:

 1. Release Summary

 2. Release Details

 3. Roles

 4. Dependencies

 5. Risks and Mitigations

 6. Release Script

 7. Rollback Plan

 Release Summary
The release summary is just what it sounds like – an overview of the release.

Maybe you highlight some fundamental changes, or critical risks, or key
success criteria. Summarize what is in the release. Please think of this as the
elevator pitch you tell the executive when she asks what your team is releasing
next month.

Patterns of Software Construction

84

Now, you must store and share this document. It doesn’t matter if you made
the document in Word, Google Docs, or some wiki. There is little value in
spending much time on this decision – just use what you have available. Put all
your Ignition documents in the same folder structure, in the same place, every
single time, and then share this location with everyone. I recommend using a
folder structure divided by Product, but you may divide by team or some
other arbitrary system. The only thing that matters is consistency.

This is what a release summary looks like:

The goal for the 2.4 SHO release is to get out the new backend APIs with all the
security changes from the last audit. This concludes all of that workstream. We also
address a number of customer-reported defects.

 Release Details
Now that you have the purpose and goals of the release, we can move onto
the important information – the details! This section is not subjective or
fuzzy – it’s the significant, tactical details about the software we are deploying
for the release.

Here are the items that go into release details:

•	 Change List

•	 Release time and date

•	 Deployment items

•	 Other release links (testing plans, load tests, deployment
items, etc.)

Change List

A change list is simply a list of work items which are in the latest software
build ready for deployment. Remember all those work items planned, built,
and tested? It’s those. The change list isn’t manually created nowadays – just
run it all from your WMT (work management tool) and insert the link. If your
WMT has nice ways to version your changes, great, use the best tools and
features at your disposal.

The Change List answers, “what code changed in this release.”

Release Date and Time

This is the date of the release and the time it starts. If you have a window to
communicate, OK, but this is just the date and time.

Chapter 6 | Release

85

Deployment Items

This section lists the services and apps that are being deployed, since a release
typically contains multiple deployable items. Table 6-1 has an example of
this case.

Table 6-1. Deployment Items

Deployable Version Deploy Notes?

Foo API 2.3 None

Commerce Web App 3.5.23 None

Synch Batch Job – Stop the jobs first.

In this case, we are releasing an API, a web app, and some backend batch job.
These are clearly listed because the folks doing the deployment need to know
what’s going on, verify versions, and have the context for their release script.

Other Release-Related Links

This section lets you add in anything else of interest to the deployable items
or for the release. Most common are links to executed test plans (as proof
that things were tested), load test results (more proof), and any internal
company approvals.

If the release has infrastructure or architectural changes, include that as well.

 Roles
The introduction to this chapter highlighted chaos as a major problem for
software releases. Since releases are organized by people, a lot of the chaos is
therefore human-made. The simplest solution to alleviate this problem is to
assign roles, as seen in Table 6-2, and put it in the Ignition document.

Table 6-2. The roles of a release

Role Name

Engineering Lead A developer from the team who knows the code.

Release Lead Coordinates deployment activities.

Test Lead Someone from QA and representing testing during the
deployments.

Operational Lead This person is an SRE, admin, or operational pro.

Performance Lead Often optional, and focused on measured performance.

Patterns of Software Construction

86

Why aren’t there responsibilities listed in the table? Because responsibilities
are extremely organization specific. LIFT doesn’t prescribe organizational
structures and titles. The roles are simple enough though and separate from
someone’s day-to-day role.

For instance, the Release Lead can be anyone. It can be a senior engineer, a
QA engineer, a project manager, or maybe someone in your team (company)
whose primary full-time responsibility is releasing software. The roles are
hats. You wear the hat and then take it off. Other people can wear the hat
next time. But two people can’t wear one hat. But one person can wear a
couple hats in opposition to the analogy. Why? Because LIFT is based on real
life, and you may need the same person to be Operational Lead and
Performance Lead.

 Dependencies
Dependencies are everywhere.

These are all dependencies: database(s), another team’s API, your APIs, a
third-party component, or an upgraded UI library. In the Build Evolution
earlier, we looked at an example team finding they had over twenty
dependencies while they thought they only had a small web application. The
dependencies section of the Ignition document allows you to list everything
you consider a dependency that impacts the deployment or, just generally,
affects the operation of your application.

Again, this is nothing fancy, it just gets the information communicated to
facilitate other conversations or actions if required. Usually, for Ignition, you
can just call out dependencies that are changing. See Table 6-3.

Table 6-3. Dependencies listed in the Ignition document

Dependency Owner Notes

Calculation
Service

Central
Team

They released a new version last month.

Fund Database You We are deploying several new stored procedures and one
index update.

Wo is to those who ignore their dependencies.

—Anonymous

Chapter 6 | Release

87

 Risks and Mitigations
A risk is anything your product team considers dangerous or volatile that, if
left unattended, has a high probability of derailing your deployment and overall
release. A risk is exceedingly contextually specific.

Consider, your new version of software has a new JavaScript library update –
a risk for this could be “browser compatibility issues in the wild.”

Or maybe the release requires a dependency from another team to be in
production before your release – a risk here is “cannot deploy onto the old
version of the calculation service.”

Risks are great to call out and you’ll feel a little relief getting the items that can
generate failure recorded with various eyeballs on them. This is not the intent.
In business, a risk without a mitigation is worthless.

What is a mitigation? A mitigation is the act of reducing the severity or impact
of a given risk. We are just scratching the edges of the broad topic of risk
management. What’s important to remember is that every listed risk must
have a mitigation. If the risk doesn’t have a plan to eliminate (to mitigate the
risk), then the risks are just a wishy-washy list of complaints – and that
helps no one.

Risk, mitigation, risk, mitigation – this is the pattern. Think about it: when
Sarah, the senior manager, asks you if there are any risks to the release and
you say “yes, lots” …. what do you think she expects from you next? Do you
think she will high-five you for creating a list of things that can go wrong? No!
She will ask “what are you going to do about them.” What is the plan? This is
risk mitigation.

 Release Script
I will warn you now. This is boring. The release script is the order of events
for the deployment. It can be at the 10K foot view or very detailed – this
implementation detail is up to you. Often, it’s like a Test Case. See Table 6-4.
We will get more into this topic later in this chapter, the thing to know is the
release script goes into the Ignition document.

Patterns of Software Construction

88

Table 6-4. Release Script Introduction

Step # Action Executor Expected Result

1 EXAMPLE:

Run Script “foo.sql” in the
“/sql/foo” folder.

DBA The console says, “updated 1 record.”

 2 Run the web app
deployment from Jenkins.

Operational
lead

Jenkins console says “success” and the
home page comes up.

 Rollback Plan
A rollback is the set list of actions to perform when the deployment won’t
deploy, or the deployed system doesn’t work. It’s the sad day when you trying
to deploy FooService v2.0 and nothing works with it. The rollback plan is then
all about how to get back to FooService v1.9.

This too is a series of steps to take, written simply enough for the Operational
Lead to execute with minimum assistance.

The rollback is the step to take when everything fails. It’s not a happy day. But
if your deployment fails, the systems are not working, the last thing you want
is eight hours of downtime while the team figures out what to do in real time.

 Ignition Summary
And finally, share the document. Yes, send a link to the document (seriously,
don’t send copies) out to everyone who needs to know. I’ve had success
posting this to the same instant messaging channel or a consistent “upcoming
release”-related email alias that blasts out to interested readers. The point is
this document has action items and meaningful information for the release,
therefore people need to read it, or at least reference it – so don’t hide it.

 ■ Note You may be thinking this sounds old school. Is this really what I want to do? And I agree.

But this book exists to shine a light on a vast reality and then move to make that reality easier to

manage day to day. We must find success in our current environments before we can make moves

towards anything leaner or faster.

Chapter 6 | Release

89

 Release Checklist
The checklist is as powerful a risk mitigation tool as anything you will find. The
checklist is used for everything from “don’t forget the milk” to-do’s all the way
to “this rocket is ready to launch.” The inherent efficacy of writing down what
needs to be completed in order and then checking them off a list is the way
humans control variability and generate safe environments. In the Release
evolution, we create a consistent checklist of what needs to be done,
each time.

I worked in an industry called EHS (environment, health, and safety) for a
short time in my career. We built SaaS software for companies operating with
hazardous materials, large mechanicals, or warehouse operations. All these
companies have people exposed to risk adverse situations – being crushed,
starting fires, or spilling hazardous materials.

For instance, consider an oil refinery. If you’ve ever seen one, they are a maze
of pipes, valves, and switches. To stop the flow of material from one section
of pipe is not just pushing a button. There are multiple steps required, in a
certain order, to be performed exactly, every time. The consequence of not
following the checklist. Explosions, equipment damage, lost time, and bodily
injury. Now, if you ran this operation, would you let the team do this type of
work without a checklist?

In software, we bypass this all the time. We think Fred has a great devops
mindset and skillset and his scripting and deployments will work the same
every time and we can trust him.

Trust him? Trust no one. If you only take one thing away from this chapter,
please let it be to trust only the process and checklist. People are liabilities.
Therefore, we automate testing. Therefore, we write unit tests. Don’t get lazy
on the last mile of a release.

Are you still not convinced?

NASA deals in nothing by complexity and safety critical systems. This is from
the 1990 Paper “Flight-Deck Checklists.”

Checklists should contain, in abbreviated form, all the information required
by the trained flight crew to operate the airplane in most normal and
non-normal situations. Normal checklists should be organized by segments
of flight. The checklist should contain the minimum 22 cues required for
the trained crewmember to verify that the appropriate actions have been
completed. Only procedural steps which, if omitted have direct and
adverse impact on normal operations, are included. Items annunciated by
crew alerting systems are not included.

—Flight-Deck Checklists

Patterns of Software Construction

90

The authors of this paper are sharing this from another association, the Air
Transport Association, who has the same recommended philosophy as air-
frame manufacturers (think Boeing) and all airlines (think United, Delta). They
all agree – a flight crew needs a checklist.

We would not have commercial flights without checklists. Why? Because five
percent of planes would have crashed annually during the golden years of air
travel, and no one would fly.

And, finally, healthcare. In 2001, critical care specialist Dr Peter Pronovost
tried creating a checklist to approve one problem: line infections. He created
a checklist of five steps that the practitioner will follow each time they change
a line. They then monitored line infections in the department where the
checklist was used and, in a year, they saw the ten-day infection rate went
from eleven percent to zero. When they extrapolated those numbers out, it
predicted they saved two deaths, dozens of infections, and over a million
dollars in costs. All, from a checklist.

 Release Definition of Done
You now see how powerful checklists are. Here, we are going to focus on a
specific type of checklist called the “Release Definition of Done.” Those
familiar with agile development strategies are familiar with the Definition of
Done (DoD) and we outlined this in the Build evolution. This is what it means
for a development story to be considered complete. The criterion for done is
always more than “I’m doing writing code.”

For Release, we’ve taken this concept and created a Release level DoD. This
level allows a cross-functional team to hit all the major actions required for a
successful release. See Table 6-5.

Chapter 6 | Release

91

Table 6-5. A sample release checklist (APM stands for agile Project Manager)

-

This checklist covers what needs to be done and who is responsible for doing
it. This list covers all the major cross-functional areas I’ve seen across multiple
teams and industries in established environments:

•	 Performance and Load testing

•	 Security (of course!)

•	 Monitoring

•	 Infrastructure

•	 Operational Readiness

Your requirements might be a little different than this example list – that’s not
a problem to capture what is most important to you. You can add or subtract
from this checklist as needed or move responsibility from one lane to another.
Have your agile Project Manager use this checklist to move the release forward
daily and share it publicly.

Patterns of Software Construction

92

When every item on your Release DoD is checked off, you are ready to
deploy the release. This way, it is clear what items are creating risk and
everyone is informed.

 Release Script
The concept of the release script is like a checklist but sequenced across
multiple topics and individual functions. Use the release script for complex
releases with multiple moving parts. Meaning, if the release only has a
deployment of a single service with minor changes, there isn’t a lot of
sequencing required and therefore probably won’t need a script.

 Communication
How are you going to communicate during the deployment and release
process? Just choose. Using a conference call, Slack/Teams/Instant Messaging,
or email are all acceptable choices. Just choose one and use it every time.

LIFT recommends instant/group messaging because it’s real time and standard
nowadays.

Create a working agreement on how the deployment communication channels
operate. For instance:

•	 The main channel is for people with a Release Role to
communicate about steps in the release.

•	 Stakeholders can’t post to the main channel.

•	 Questions about the release happen in a separate, named
channel.

These are not hard and fast rules, rather they are guidance on the kind of
rules required to remove noise during a release.

 Play-by-Play
The play-by-play is the detailed deployment script. This is when you list, in
detail, the steps to take to achieve moving all your software from a non-
production environment to production. The more detailed, the better,
because the operator of the deployments won’t have to ask as many questions
and the deployer role becomes more portable.

Chapter 6 | Release

93

Here you list actions, in order, like

 1. Shut down all batch jobs on prod-batch-01/2/3/4.

 2. Turn off synthetic monitoring.

 3. Run the deploy-prod-app job and review output.

 4. Etc.

The contents of the play by play are 100% specific to your environments and
products.

 Fallback vs. Rollback
Part of a deployment is building in plans for the contingency – for example,
when things fail. You want to enumerate the steps for the return to a normal
running system because some of your deployments will fail – that’s just life.
The deployment will fail because of a defect, a dependency, or being rejected
for some other business impact rationale.

There are two ways to accomplish this activity:.

•	 Perform a fallback – the return to another copy of the
system that is operating concurrently.

•	 Perform a rollback – the reversing of all changes to a
previous version.

Let’s talk about this a little more.

Some teams prefer building their systems for a fallback scenario, so they have
two production systems, an A and B. A and B are identical infrastructure
environments and are interchangeable.

Fallback is going back to a current operational system as the deployment
failure strategy. This setup has several advantages, like

•	 Returning customers to the old software can sometimes
just be DNS pointer changes or script execution.

•	 The change is idempotent and well known.

•	 Testing is straightforward as the fallback system never
changed.

And like everything, there are some disadvantages:

•	 The cost of purchasing and running duplicate environments

•	 The cost in time/labor to maintain duplicate environments

Patterns of Software Construction

94

So, if cost is not an issue, setting up your environment for fallback is ideal, as
you can see in Figure 6-3.

A rollback has the same outcome as a fallback, which is the previous version
of software for customers. Executing a rollback is much more intense than a
fallback if your environment is more than a single application. You will have to
run deployments of the previous version against all destinations and have a
strategy for backing out database changes. This is a common, though not
recommended, setup, so there is no other guidance to provide here that isn’t
extremely context specific to your environments.

 Production Validation
The software is now in a production system and it’s facing customers (with a
live deployment) or about to face customers (with an A/B deployment).
What’s next? Validation.

 Logs
LIFT anticipates basic non-functional characteristics like logging – any type of
logging. Table 6-6 below lists the places you need logging and thus the logs to
check post deployment.

Figure 6-3. A deployment swaps A for B and then a fallback is B back to A

Chapter 6 | Release

95

Let’s say the deployment completed at 9:05 PM CT – then start checking the
logs for all events after 9:05 PM CT and keep looking for the next ten minutes.
If you don’t have natural user traffic during your deployment window, you’ll
have to generate traffic (see the following text for automated testing).
However, having testers (or engineers, or product managers or anyone with a
pulse on the release) perform a login, run through some basic scenarios, etc.,
should trigger log entries into any of the log types mentioned earlier.

You are looking for anomalies, errors, and warnings. And then investigate
errors immediately and have someone look at the warnings.

 Monitoring and Synthetics
Monitoring… where to start? The entire world wants to talk about the
monitoring of systems. Most of us have had some stakeholders ask, “don’t you
have monitoring?” Well, what does that mean? We’ll get into that more in the
next evolution. For now, we will pretend we have the items put in place from
the Operating Evolution chapter.

After a deployment, check your monitoring tools. That’s straightforward…
whatever tooling you are using, look at it now. Hopefully you were looking at
it during the deployment, but no harm no foul at this point.

You can’t see monitoring screens for your products? That’s a major smell to address right away.

This means you have either an operational team to talk to or someone hoarding information.

Either way, if you’re accountable for the release, you get to see your systems in prod.

Next, as part of monitoring, look at your application synthetic results. These
are the real transactions run against your systems using scripts. For instance,
“go to homepage, login, verify page past login has XYZ on it.” Again, we’ll get
into more details in the next evolution.

Table 6-6. Logs to check

Log Type Description

Log Tool This is your log aggregation tool containing access to all the logs that follow.

Application
Logs

This is the ideal log to check as it’s created by the application at runtime. You
may need to check server by server unless you have a log aggregator.

Server Log This is the log information from a given server’s operating system.

Patterns of Software Construction

96

The long and short of checking monitoring first is that you’ll see big red flags
immediately. Maybe an app server CPU just jumped to 90% or you are losing
available memory like crazy. And on the synthetic side, if the tests start failing,
you know something is wrong and you can investigate the failures. A release
is never over until all monitoring is green! Get to green!

 Automated Tests
Continue using your automated tests from QA and Stage/UAT against your
now live version of software in production. This requires having a subset of
automated tests whose sole purpose is production validation. These fall into
two categories:

 – Smoke Tests

 – Sanity Tests

The smoke tests validate the most basic of functionality, like hitting the
applications home page or performing a login. The sanity tests go a step
deeper and validates new functionality or bug fixes deployed. Both suites
require success to finish the release.

 Release Complete
Just like a work item needs a definition of done (from the Build Evolution), the
release has criteria we hit to mark the release complete. Once the logs are
clear, monitoring is clean, and the automated tests are green, the deployment
is complete and the release is done. You are complete!

 Activities Summary
To review, a deployment is inside a release and the deployment has a specific
sequence of activities. Follow the steps for each activity and a release will
become a non-event:

•	 Review the Principles of a successful release.

•	 The foremost activity is to create the Ignition document.
This document captures a lot of information that is often
left unsaid and relegated to tribal knowledge.

•	 Change list

•	 Release Date

•	 Deployable Items

Chapter 6 | Release

97

•	 Roles and Responsibilities

•	 Dependencies

•	 Risks and Mitigations

•	 The Release Script

•	 A rollback plan

•	 Modify and use the Release Checklist to ensure step-by-
step success.

•	 Create a release script to keep everyone moving forward
during a release and control variability.

•	 Finally, validate the production release with logs,
monitoring, and automated tests.

Patterns of Software Construction

© Stephen Rylander 2022
S. Rylander, Patterns of Software Construction,
https://doi.org/10.1007/978-1-4842-7936-6_7

C H A P T E R

7

Operate
Evolution #5

Operating a software system is often taken for granted as a secondary or
third level concern when designing and building new software systems. This
myopic focus on build and ship, at the expense of quality and operating
capabilities, is a key drive for what this book and system are all about. You’ll
see that operating a system in production is non-trivial but not complex. It
too is a series of activities, concerns, and outcomes.

 ■ Note You may already be operating your system, and therefore you are starting this evolution

before Plan.

https://doi.org/10.1007/978-1-4842-7936-6_7#DOI

100

Category Description

Target Running the released software in production in a consistent, predictable, and low
stress manner.

Inputs 1. A system in production

2. A team with potential to operate production

Outputs 3. A system of to observe the software

4. Operating procedures for issues (tech, rotations, post-mortems)

Visibility 5. The internal mechanics of the system in production

6. Issue lists as they arise and for mitigation later

The
Win

You can see issues rising before they become full problems for your systems and
customers. Plus, you have a predictable way to handle the situations and control
the impending chaos.

 The Problem and Possibility
At this point your software is in production and that is something to celebrate.
This event also introduces a new set of problems – ones that your current
skillsets and capabilities may not be able to address. Let’s look.

 Problem #1 – You Have No Idea What Your
Software Is Doing
The software is shipped – yeah! Now what? How many errors are happening
daily on the connection to your internal dependencies? Is the software running
as quickly and responding as timeline as expected? Do you even know what is
expected for response time?

OK, this is easy stuff. How about the data? Are all your records being saved?
Can you prove it? Most of the time teams have no idea if their production
software is doing what is expected unless someone complains.

 Problem #2 – There Are No Hooks to Observe
Internal Behavior
A hook is a method that an external system can connect to and extract
relevant information. You don’t have anything like this programmatically so it’s
not possible to, say, have your software call an external API on interesting
events. Your software is static, not dynamic, so brittle to change and
observation.

Chapter 7 | Operate

101

 Problem #3 – Incidents and Accidents Just Happen
with Little to No Consequence
The result of your inaction is telling everyone around you that you just don’t
care. You and the team are a walking generality with no concept of specifics.

The system is slow.

The page only partially loads.

Records are missing from the database.

A whole segment of customers cannot login.

All these things are incidents in corporate systems and SaaS, yet they just
keep happening to your projects and things only improve partially and slowly
and no one is ever held accountable.

The problem is not the problem. The problem is your attitude about the
problem.

—Captain Jack Sparrow

 Possibility #1 – You Know What Your Software
Is Doing
You wake up with confidence your team knows what is going on with your
software. You have tooling in place to let you see the transactions and API
calls inside your software. You have logging that is active and being used
pumping out logs of errors, warnings, and important information. And
synthetic key transactions are running against your application consistently, so
you know what is happening for customers before issues become incidents.
All this tooling is used productively and in a consistent manner.

 Possibility #2 – When Incidents Happen
You Know What to Do
Oh no, customers on the west coast can’t login! Wait, you know what to do.
First, internal alerts go out before customers start complaining so the
response team is already in communication. The right people are paged, the
right data is being reviewed, and communications are flowing. Troubleshooting
has started before you even get involved. And, after functionality is restored,
the situation is reviewed, items are created to prevent this incident from
happening again, and the system progressively becomes more resilient.

Patterns of Software Construction

102

 Possibility #3 – You Live in a World of Specifics
The entire operational support plan of your software product is driven by
data. You know the response time thresholds for all key areas of the application
and how many concurrent users it can support and what the requirements for
support are.

And it’s like this all the way down – from performance to usage to error rates.
Customers use the software to solve problems that computers can solve. You
live in a world where specifics rule and generalities are slowly turned to data
that is actionable.

 Principles
Three key principles create the foundation for the Release evolution:

 1. Measure Everything.

 2. Test Everything.

 3. Operating procedures drive change.

 Measure Everything
Be specific. Every application, service, and the components that make up a
system are made up of attributes that describe the function of that system.
Therefore, these applications, services, and components are measurable.
Why? Because everything in life is measurable. Table 7-1 gives a few examples.

Table 7-1. Everything in life is measurable

Steps taken daily Sleep hours % Carbon in the air

Milligrams of mercury in water Your dad’s age Your doctor’s years of experience

feathers on a duck # fishes in a lake Mb/s download speed

If it’s an object, virtual or physical, it has characteristics. These characteristics
can be observed and measured. And since we can measure all of these
(random) items/concepts, then we can measure the software systems we
spend millions of dollars to create and maintain. Table 7-2 below enumerates
some of the items we want to measure in our systems.

Chapter 7 | Operate

103

Table 7-2. Measure your systems

APIs # API calls/min #API calls/sec

Most called API Most visited page Least visited page

Longest running query Most used query Etc.

You can even measure your measurements.

 Test Everything
Now, once you can observe and measure the characteristics of a software
system, you can test those characteristics for validity or thresholds.

All of this is applying the scientific method to software. This is not a new
concept, as nothing in these patterns is new. When characteristics of software
are observable, they are measurable. If something is measurable, that means
we can run experiments on them – which is what testing is. Testing is what
you do to run an experiment and validate (positive or negative) a hypothesis.

Scientific Method

The scientific method is a method to study natural science since the 17th century. It consists of

systematic observation, measurement, experimentation while creating and validating a hypothesis.

The next logical step is to form a hypothesis (test cases) and generate
experiments (tests) against these characteristics. For instance, here are some
basic operational tests:

 1. Browse the most visited page in the site.

 2. Query that the longest running query is within its
measured acceptable range.

 3. Perform a browser-based login to validate the login works.

 4. Ping each internal API every 5 minutes to verify they are
working and responding in a given threshold.

 Operating Procedures Drive Change
You see, these principles build on each other and need one another. A
software system is measured and then tested – in as many places as needed,
for example, test everything everywhere. But this choice of activity isn’t
random either.

Patterns of Software Construction

104

One of our possibilities is to operate in a world of specifics. Therefore, to
create this world, we need specific procedures to follow over and over. These
repeatable steps produce feedback loops, and this feedback informs the
changes to make to the software (code and defects), features, non-functional
characteristics, and operational changes to reduce the support required. You
must use the same process to generate the feedback loops so that each
experiment (test) follows a similar process.

What does this mean?

Consider using a compass in the wild. You are out in some rocky wilderness –
hills, rocks, plenty of trees, and your line of site is never more than about 30
yards or so. You need to get back to your camp and know it’s west of where
you are right now since you hiked east by using your magnetic compass. The
surroundings do not look familiar but there is still plenty of daylight. So, you
are fairly sure you can navigate back.

Do you:

 A) Navigate back using your compass?

 B) Throw away the compass and use the sun?

 C) Guess which way to walk and start walking quickly to get
back before dark?

You use the compass. Why? The operating procedure to return to camp is to
head west. And your tool of choice to find west is the compass.

Unfortunately, software and operational teams often wander around or
change tools midstream without a real rationale.

If you leave with a compass return with the compass.

 Activities
The activities of the Operate Evolution build upon each other and start with
an assumption you are new to Operations. The focus is getting a stable
foundation by putting consistent procedures in place, create ways to observe
the system, and only then start moving towards responding and preventing
problems. There are helpful tools which ease the processes that are discussed
in this section as well.

 Standard Operating Procedures
Imagine you are making spaghetti and meatballs for your family dinner. This
sounds simple and you’ve made it many times and the family has eaten it up.
How does this process go? Let’s start with the sauce, and you proceed thus:

Chapter 7 | Operate

105

 1. Heat olive oil on medium-low in a large pot for sauce.

 2. Chop onions, carrots, and celery.

 3. Add vegetables to the pot and let them slowly cook to
create the base. (Vegetables sweeten when cooked low
and slow).

 4. After they are softened, at least 20 minutes, add whole
peeled San Marzano tomatoes to the pot, salt, and
pepper, increase heat to medium and cover for one hour,
stir every 15 minutes to prevent sticking and burning.

 a. If the sauce is starting to burn, reduce heat and add
two tablespoons of water.

 5. (Abbreviating now) Prepare, form the meatballs, and fry.

 a. If cooking 2 lbs. of meatballs, use two frying pans.

 b. If stovetop is full, bake meatballs at 425 degrees for
25 minutes.

 6. Cook the spaghetti in boiling water.

 7. Serve.

This is a standard operating procedure. It outlines the procedures to follow
to start work and provides guidance on the procedures to then follow when
circumstances change – like in step 4a. The goal of writing a standard operating
procedure is to create consistency and safety.

Imagine if you didn’t have a process to follow when making spaghetti and
meatballs and you did it different every time. Putting raw meatballs in a cold
pan or adding the raw onions to a completed pot of sauce isn’t going to yield
the results required. Letting the sauce burn – not so tasty anymore – which
means it’s not a usable product.

Of course, to create the maximum amount of chaos, make this meal without
the instructions and bring in three other team members with their own
opinions!

A Standard Operating Procedure is like a recipe with contingencies.

You will have Standard Operating Procedures (SOPs) around anything that is
operational. What is considered operational?

Table 7-3 shows many activities and structures which are operational in a
software-based system.

Patterns of Software Construction

106

Table 7-3. Operational Items (the most important)

Infrastructure management Monitoring Tracing

Incident management Cloud management Security

Deployments Build pipelines Log management

You’ll need SOPs that cover what is most important to the release of software
and then operating those applications in production. Therefore, to move on
the item in Table 7-3, you’ll need an SOP for each area. Nine areas are a lot
to take on, so here is the minimum set of SOPs you’ll need with a focus on
working software in production:

 1. Deployment SOP

 2. Monitoring SOP

 3. Incident Management SOP

 4. Infrastructure SOP

Now, you can focus on the deployment, monitoring, management of
production issues, and the hardware across all your application stack in a
concise way.

Here is a partial example of a Deployment SOP:

 1. Pull latest build number from Jira build list.

 2. Verify build date is within last 24 hours.

 a. If not, email engineering manager for verification.

 3. Shutdown the Foo Service on Node 1.

 4. Run the deploy.rb file against the latest build UNC path.

 5. Check the Foo logs.

 6. …

A standard operating procedure (SOP) is a set of written procedures or instructions for the

completion of a routine task designed to increase consistency, improve efficiency, and ensure

quality through systemic homogenization.

The SOP is best written as a checklist, just like we outlined in Evolution #4
while using the checklists for Releases. A release checklist is a type of
Standard Operating Procedure, we just hadn’t yet defined this construct

Chapter 7 | Operate

107

because it exists much closer to the operation of systems than the
development of them.

 Create Observability and Monitoring
Now that you have a means to create repeatable operating processes with
SOPs, you can put the first few major operational blocks in place. All
production (and most non-prod) needs two core operational systems:

 1. Observability

 2. Monitoring

And, no – these are not the same thing.

Observability is the introspection of running software. We are materially
looking inside a running piece of software and the system. For instance, take
our favorite, the Foo Service. Observing the Foo Service includes looking at the
Foo Service at runtime and application tracing at runtime. The key to
observability is looking inside on a running application as it executes to
promote active debugging and application understanding. Often, you don’t
know what you are looking for before observing an application.

Now, monitoring is like observability in that we are gathering data, but it’s
more focused. Monitoring is the set of tooling and practices to watch a system
using a predefined set of metrics and logs. Monitoring shows what happened
at the system level by looking at events from an outside perspective.

To better understand these concepts, please refer to Figure 7-1. Here, you
can see that the application has many technical stakeholders in its operational
footprint.

Patterns of Software Construction

108

Figure 7-1. The complete view

Let’s work left to right across this diagram.

On the far left, labeled stage 1, we have the user inputs into the application:
this comes in the form of user interactions (traffic) and transactions they take
(search, submit, etc.). These interactions are often captured in a predefined
state as usage metrics. These actions kick off most of the application activity
in the system.

Next, in the middle, stage 2, is the large application box. The box can stand
in for one application, several applications, or an entire sub-system. The
application is acted upon by stage 1 user traffic. The application uses other
systems as dependencies, generates data for monitoring, and is observable.

In the bottom row, stage 3, are the dependencies of the application. Interaction
with these dependencies is a core part of the system (consider how
fundamental an application’s database is!) and they too generate telemetry
events for monitoring or that influence results of observability and application
tracing.

Stage 4, the far right, includes all the telemetry, events, logs, and predefined
metrics for monitoring that the execution of the application generates. This
data is consumed by monitoring tools.

Chapter 7 | Operate

109

And, finally, stage 5 at the twelve o’clock position of the diagram is the
observability functionality looking inside the application at runtime and
capturing application tracing and real-time interactions with dependencies.

 Operational Tooling
Ah, tooling. We have not talked much about tooling during the last four
evolutions, and we won’t get into specifics here either. In the following, we
cover the types of tools required but do not make recommendations as the
breadth of offerings is forever changing.

Figure 7-2 shows your toolbox. You will need something that handles each of
these observability and monitoring needs plus some others.

Figure 7-2. Your Toolbox

Infrastructure

This is monitoring tooling for the basics of your environment: server-based
CPU, memory, and storage usage. Without a doubt, this is the most basic
level of monitoring available.

Patterns of Software Construction

110

Logs

You need a log aggregator. Maybe you’re thinking, “no, I can just log into
machines when we are investigating.” The response to this is, you’re right. You
can also hot wire your car everyday instead of using your keys, but no one
does that.

Aggregating (forwarding/copying) log information from all your applications
and devices to a single searchable location has immense value and is a reason
that the big tool companies in this space have been so incredibly successful
over the last 20 years.

For the aggregation of logs to succeed, you will need to give some thought to
your log levels. You remember those right? Levels like info, warn, error, critical,
etc. Require applications to log with an accurate level so that sorting, filtering
and searching at the aggregator level makes sense. For instance, this is a
common filter: “All log entries from server name like ordweb* with
level=error”.

This amounts to: find all log entries from server names that start with ordweb
and that are marked with the log level error.

Traffic

Where are your users coming from? Are they coming in from a web browser
in your office? Remote work locations? Or are they customers connecting to
your products over the Internet from locations all over the world. You need
a tool that reads user traffic that hits your servers and records their activity
in web browsers while using your application.

This data is immensely valuable when deciphering any production problems
loading web pages, or slow response time with possible geographical issues.
Plus, your product team will learn a lot about their users and customers from
the data.

Tracing

Application tracing is the core concern of observability, so consider this your
observability tooling. You will need a tool that is currently popularly known as
Application Performance Management. There are big players in this space and
now many smaller-to-midsize offerings, since it’s grown to be such a vital tool
for teams who build and operate software on the Internet.

Events

Events are publications of activities of particular interest captured in a central
location. It’s like log aggregation… but for events.

Chapter 7 | Operate

111

Want an example of an event?

•	 CPU exceeding 98% on machine FB89ORD01

•	 No files received to FTP for more than 25 hours

•	 Memory running at 50% capacity for more than 2 hours

Dependencies

Modern teams look at their dependencies as much as the software they ship.
Why? Because the success of your software is only as good as the software it
depends on. The cheeseburger is only as good as the bun, etc. To look at your
dependencies, rely on the Tracing and observability tooling – so the Application
Performance Management (APM) tool.

Now, you may go and look at adding these tools to your toolbox to find out
that event tools or an APM cost money. It’s true. LIFT Engineering expects to
spend some money at some point. So, here’s the thing. If you run a product,
like SaaS that generates revenue (and is therefore quite important), then
spending money on some tooling to increase revenue won’t be a big issue
when you work with management.

On the other hand, if your software is internal, you may not get backing to
purchase an APM. Do not distress. Internal tools usually don’t need deep
application tracing because they exist on a different plane than SaaS. For
example, you probably don’t need it, so you can leverage what your team/
company has or get by with a focus on free/OSS log aggregation and
monitoring tools.

And, to conclude the tooling section – which tools are a must and a
showstopper, shoot-yourself-in-the-foot, not to have?

 1. Infrastructure

 2. Logging

If you don’t have at least these two and your solution has even one dependency
(API, DB, other service, external party) then you are just going to have a very
hard time executing the Operate evolution. Finally, if you find yourself in a
situation with no tooling, no support for tooling, and no budget for tooling –
then it’s time for you to move on anyway.

 Responding to Problems
Production problems are always operational problems, but not all operational
problems are production problems.

Patterns of Software Construction

112

In this chapter, when we refer to problems, it’s an interchangeable terminology
with the phrase incident or issue. Some teams say:

“Yeah, we have issues in prod.”

While others say: “There is an incident in the live environment.”

Or “Prod is having problems right now. Don’t even get me started.”

They are all referring to things happening in our customer serving environment
that we do not want to happen, most likely orbiting around availability,
performance, or correctness. For our purposes, we’ll use the term incident.

 Use Your SOP
We spent a bunch of time earlier in this chapter talking about standard
operating procedures. An incident response process is a classic SOP. Write up
who you want to do what and when and you’ll be miles ahead of where
you were.

 Restore Service First
Lengthy and intimidating frameworks exist for the prescriptive handling of
incidents, resolving them, managing them, tracking them, turning them into
problems, and a whole lot of other complicated procedures.

But that hardly matters when there is a problem in prod. Only one thing
matters: restore service for customers.

What does this mean?

If the application is slower than usual and not usable, restore it to normal
speed. If the application is down, bring it up. If the system is showing incorrect
prices, get correct prices in there.

A service, for a customer, is simply any action they are trying to take. And the
job of any engineer is to make products work – now.

It’s like your electricity. When it’s dark and storming and the power goes out,
do you care what they must do to bring it back on? Be honest. You don’t.
Pretend your local power company reverted over to a big pile of burning coal
and rubber gloves while they restore parts of the fried electrical towers
somewhere. Maybe they come to your block and snake big green lines across
the street because the south side of the street has power, but your side was
without. It’s a temporary solution to the electrical company – and to you
“service is restored.”

That’s it. Restore service.

Chapter 7 | Operate

113

This is when you’re allowed to change production servers and configuration,
deploy new code rapidly, take bad servers out of rotation, or reboot that
database at 2 PM.

Reliability is a prerequisite to success.

—Anonymous

 Respond Only to Synthetic Monitoring Alerts
Synthetic monitoring is recorded (or written scripts) that perform interactions
with a (web-based) application using a web browser. To the application, these
are real users because they are everything but a human doing the work.

Is this a type of test automation? Sure. Synthetics are operational though and
keep an eye on the system from an outside perspective.

In previous chapters, we referred to the Foo Service. We can’t test the Foo
Service via synthetic monitoring because the Foo Service is internal. Here, we
run synthetic scripts against the Reporting Application, which in turn uses the
Foo Service (and a dozen other services.)

Our synthetic runs through a web browser on remote infrastructure, usually
in some datacenter or cloud-based infrastructure, and then executes the
steps in the script through the web browser. The beauty here is your synthetics
can run from many different geographies also teasing out other possible
production complexities, like slow east coast compared to Midwest
transactions.

Your team should only respond to alerts coming from the application itself.

But what about the infrastructure monitoring? Well…if your CPU is running
hot but the application is working as expected, does it matter? No, it doesn’t.
It’s not a production incident…it may not even be an issue to investigate
unless it begins negatively affecting application usage.

So, don’t respond to noise or hunches. Respond to failed synthetic monitoring
only. Making this part of your standard operating procedure drives teams
creating better and wider sets of synthetic tests and keeps the focus on: Is
Production Working as I expect?

 Rotations
This is very much based on who is on your team today or your ability to hire
new roles. Figure 7-3 shows our example team setup.

Patterns of Software Construction

114

Figure 7-3. Slicing production support rotations from existing teams

The LIFT approach is to take engineers and divide them into rotations or mini
“tours of duty.” This works best on 1–2-week intervals. If your system has lots
of problems, you’ll need to stick to one week less your folks burn out.

Here you can see we take slices across teams and put them into a rotation
support schedule. Equip them with your SOP on production incidents and let
it roll. Feedback comes in from your rotational support team members and
improvements are made, rinse, repeat.

 Long-Term Fixes and Mitigations
As the team triages and troubleshoots production incidents, they will find a
few things:

•	 Reoccurring issues

•	 Black swan type of unpredictable issues

•	 Unreproducible issues

All of these need a mitigation plan.

Chapter 7 | Operate

115

What is mitigation?

mit-i-ga-tion

the action of reducing the severity, seriousness, or painfulness of something

Any problem you want to go away needs a mitigation strategy. That’s it. Find out what it takes to

make the problem not appear again and you’re set.

Let’s look at a few examples.

Example 1 – Reoccurring

Issue: The application is critically slow for the last two days of every month.

Root Cause: Users run end-of-month reports at the same time.

Mitigation: Add application caching for large reporting runs and two new
reporting servers.

Example 2 – Unpredictable

Issue: Off-hour pricing updates on the warehouse are no longer finishing by
6 AM CT.

Root cause: The sales team sold 1000 new seat licenses to a large customer
in an oppositive team zone. These 1000 new users are overwhelming the
system during the hours 1–6 AM CT.

Mitigation: (1) Move pricing calculations up by two hours and add 12 more
vCPUs to the cluster to finish before this customer comes online. (2) Setup
new communication channels with the sales team to prevent being caught
off-guard.

Example 3 – Unreproducible

Issue: At 12:10 PM CT, Monday, all fund prices should “NaN” on the Reporting
App. By 12:15 PM CT, all prices were back to normal.

Root cause: Unknown

Mitigation: Unknown. Research continues.

The sum of mitigations is to fix issues before they become major problems by
organizing action lists and executing them back in your Plan evolutions.

Patterns of Software Construction

116

Anti-Pattern Alert!

Beware of the quick fix becoming part of the cement. The problem with that broken file
share permission which blows up the stock pricing on the website is not the permission. It’s
the dependency. Sure, the permission is what made the file unreadable. But the dependency
is what brought pricing down.

Getting to the root of problems is not easy nor obvious. Everyone has to put on their
Sherlock Holmes hat and ask what was the problem that caused the problem that caused
the problem that caused the problem. Logical deduction and investigation will yield large
results.

Why? Because that file permission will eventually break again.

Think about this – should your website (and customers) be dependent on some random,
old-school file share between old windows servers? Seriously. No.

The solution is to remove the dependency and replace it with something that is resilient.

 Service Level Objectives
As much as LIFT tries to avoid tedious acronyms, we can’t avoid them all.
Service Levels are a hot topic in the industry and will continue to be as the
drive towards SaaS continues and firms rely on myriads of outside applications
to run their business. To play this, and it is a game, you must know the basics.
Table 7-4 outlines the key topics and definitions.

Table 7-4. Service Level Objectives

Topic Definition

SLO Service Level Objective. This is the desired state of any given application, service,
or component in the system. This metric is for internal use only.

SLI Service Level Indicator. The attribute measured to assess conformance to the
SLO. For instance, if the SLO is 99.9% availability, then the SLI is the Uptime Metric
measured from the monitoring tool of choice.

SLA Service Level Agreement. A formal, usually contractual, agreement between the
provider of a service and a paying customer. For instance, an SLA may include a
requirement for 99% uptime and a 24-hour rolling average page response times
under five seconds.

Error
Budget

The error budget is calculated by measuring the tolerable space between the
internal SLO and the contractual SLA. Example: The SLO is 99.9% uptime, and the
SLA is 99% uptime. The error budget is .9% of the year, or 78.84 hours. It is normal
to have a stricter SLO than SLA so that you can manage the difference.

365 days * 24 hours = 8760

.9% * 8760 = 78.84 hours

Chapter 7 | Operate

117

OK, great. How do we use this?

Work against your error budget.

In Table 7-4, we see that the Error Budget for the Reporting Application is
78.84 hours. This means that the application can be down for 78.84 hours
before we breach the Service Level Agreement. Managing against the error
budget thus means we are keeping track of total hours (budget) of downtime
as it moves towards the SLA.

The SLI is how the measurement for the SLO (and thus SLA) is measured. In
this case, it’s uptime. So, there is synthetic monitoring in place checking the
application every 5 minutes, 24 hours a day. This metric becomes the Service
Level Indicator.

What follows is an awful scenario, but pretend that the year starts and in the
middle of January the Reporting Application goes down for two days and a
total of 51 hours. Everyone is stressed and working to restore service and
bring the system back up. At the end of all this, the database vendor and their
premium partners flew in overnight with new boards for the database
hardware and did a hot install to bring the system back to life. This is quite an
awful scenario, but realistic. By the end of this ordeal, the remaining error
budget is 27.84. Eleven more months are left in the year, and you will be in
major agreement breach if that application is down for 27.84 hours.

What do you do? Make significant upgrades across the entire stack to help the
application stay up for the remainder of the year! There are no tips or tricks
for that – it’s all specific to your application at that point.

Measuring what you want to achieve is a no-brainer. But doing it is rare for so
many teams. When you measure what you want to improve, things will
improve – and you’ll stay on the good side of your sales partners and
customers.

 Create Performance and Stability Improvements
Now that you have some idea how and why to manage an error budget and
the criticality of setting SLOs, you have a tangible and meaningful mechanism
to push performance and stability improvements up the backlog and into
planning scenarios.

When the error budget is running low, changes must be made. Wait. They
don’t have to be made – your company can be OK with being sued for breach
of contract written into the SLA, which is often an addendum to a larger
contract. Yes, yes, this stuff is boring – but it is the big why to many decisions
around operating production systems. Customers don’t care how you write
your software – but they care if the application they pay for is working when
they need it.

Patterns of Software Construction

118

Between performance and stability reports from the field generated by the
rotating production support team and managing the error budget, there are
plenty of items to schedule that will improve performance, stability, or both.

Push this information back to Plan and use the data collected here as evidence.
It’s your responsibility.

 Manage Change
Controlling change is quite simple. It only becomes complex as the number,
size, and scope of systems increase. This is then triggered by legacy systems,
their replacements, and the technical baggage that follows without retiring old
equipment and applications. The following is the most straightforward and
efficient way to manage application changes into production environments:

 1. Schedule the release.

 2. Notify others of the scheduled release.

 3. Release.

See, the simplest way to manage change is just to schedule the release. Now,
change can come in more flavors. Let’s look at some network infrastructure
change. This is a good topic because it’s the same scenario for a data center
or in a public cloud provider:

 1. Schedule the network router upgrade.

 2. Notify others of the scheduled maintenance.

 3. Perform the upgrade.

Wait – isn’t that the same series of events? Yes. That is change management
for running software systems. Anything else that lands into change management
at companies is driven by other internal processes and policies. For instance,
your company may have a policy that says network upgrades can only happen
during the second week of the month. Or a policy stating full source code
security scan completions and review before a release is scheduled. It doesn’t
change the overall pattern.

Schedule, inform, and perform the action.

Chapter 7 | Operate

119

 Summary
Here are the patterns to learn:

 1. Use Standard Operating Procedures to create safe
predictability.

 2. Getting inside an application is more powerful than
observing it’s outputs.

 3. Measure everything.

Operating production systems is not easy, but it’s not complex. Create
predictability, use a small set of the best tools you can afford, and make sure
your decisions are based on data. With that, you’re way ahead of the curve.

 Activity Summary
Some of these activities may feel foreign to you and that’s OK. The concepts
of SLOs, observability, or things like log aggregation used to be strictly in the
“operational professional” domain. But times have changed, and all these
activities continue to push left towards development cycles.

•	 Create and use Standard Operating Procedures.

•	 Create observability and monitoring across your
application tiers.

•	 Keep track and leverage your logs.

•	 Choose the best tools you can afford that get the job
done you need to observe and monitor your systems.

•	 Create and use incident response processes.

•	 Create rotational incident response teams.

•	 Restore Service above all else.

•	 Measure and create SLOs using SLIs that all support
your SLAs.

•	 Set aggressive SLOs for yourself to promote
continuous improvement.

Patterns of Software Construction

© Stephen Rylander 2022
S. Rylander, Patterns of Software Construction,
https://doi.org/10.1007/978-1-4842-7936-6_8

C H A P T E R

8

Manage
Evolution #6

Here you are, evolution six of six. You have seen the problems, the possibilities,
and the activities to move across planning, building, testing, releasing, and
operating your software. Problems like, we live in chaos and possibilities like,
repetition of activities builds results.

The Manage evolution focuses on taking repeatable, strategic steps in the
management of the entire LIFT Engineering cycle. Each time you complete the
six evolutions, it’s called a “system cycle.” From this vantage, you are looking
back down the mountain you’ve climbed and it’s time to consider the things
that worked well, the activities to improve on, and the people who helped get
this release out the door. Whether the release was the first for a new product
or one in a long line of deliveries, the activities are the same, meaningful, and
described in this chapter.

You can have it all, but you can’t do it all.

—Garrett J. White, founder of Wakeup Warrior

Figure 8-1 shows you are now at the end of the evolutions for this cycle – but
the work is not over.

https://doi.org/10.1007/978-1-4842-7936-6_8#DOI

122

Figure 8-1. Manage is the top of the evolutionary climb

 ■ Note LIFT Engineering provides the evolutions, which act as the patterns to keep applying to

the process. In this evolution you will see how this entire system is self-sufficient to recycle again

from the start.

Category Description

Target A plan on what to change, improve, or remove in human interactions and events
before starting the evolutions over.

Inputs 1. An operable software system in production

2. A team that has released software and dealt with running their system in
production

Outputs 3. Improvements to make across the next completion evolutionary cycle

4. Reflection points on what did and did not work

Visibility 5. Documented change improvements anywhere across the evolutions

The
Win

You (and the team team) are proud of what they shipped to production and
prepared to start the evolutions again with confidence.

Chapter 8 | Manage

123

 The Problem and Possibility
Like in each evolution, there are problems to address and possibilities to
create. The Management evolution is the only evolution requiring introspection
and is the least prescriptive in nature. But make no mistake – skipping this
evolution would only hurt adoption of LIFT or any engineering system.

 Problem #1 – Now What?
Moving through the evolutions with their activities to land here at the Manage
evolution required dedication. The path was simple, yes, but the number of
enumerated activities was probably surprising compared to how most
practitioners think about building and shipping software. This level of detail is
the same result when you take any activity and break it down into its
constituent parts.

So, the question is: what do I do now? Do you go back through the evolutions
exactly like before? The completion of a long shipment of software is often
the time leaders and teams stop. The first problem is what to do next.

 Problem #2 – People, People, People
The second problem is people. The LIFT Engineering System provides
prescribed and repeatable sets of activities and measurements that lead your
team from evolution to evolution. The only consistent factor across all
evolutions working towards a shipment of software is people. Seriously –
everything else is continuously evolving (code, test plans, deployments)
outside of people.

Engineers, testers, product managers, executives, managers, system admins –
they are all just people. And people’s interpretations, opinions, beliefs, and
actions are the only thing separating your software shipments from leveling up.

 Possibility #1 – It’s Easy to Make Improvements
Improvements are easy to make. The first possibility to create in your mind is
improvements are easy. It really is. If you took a team through five evolutions
to land here at Manage, then you’ve already learned how vital continuous
progress is. Now, you see that making incremental improvements to activities
in the system is not only necessary but easy and repeatable.

Patterns of Software Construction

124

 Possibility #2 – Skillsets and Mindsets
Are Adaptable
Your people are upgradeable. That is, everyone has a set of skillsets and
mindsets, and these can be trained, grown, or adapted to the goals around
LIFT Engineering, the prescribed activities, the skillsets, and the use of guided
autonomy to accelerate delivery across each evolution. Your people grow and
change, and they must for you to stay consistent (e.g., not slip backwards) and
execute at a high level.

 Principles
This evolution is based on principles of improvement across the lifecycle of
the evolutions.

 Evolution Changes You for the Better
Business, which all of software is outside of academics, is loaded with case
studies of leaders and high achievers explaining how they achieved their
results. There is a common theme. They improved themselves to become a
bigger and better version of themselves. This self-improvement allowed them
to achieve results as individual contributors or excellent leaders.

Focus on being more, not doing more. This focus of improvement yields
exponential results and is directly under your control.

 Walk Then Jump
Forget the crawl, walk, run analogy towards learning and maturity. Software
teams aren’t babies!

Instead, growth from professionals better fits this model:

Take smaller steps,

Take bigger steps,

Jump.

Here, the team is to take more small steps – each Evolution is full of these
activities that constitute many small steps. And then take the larger steps – do
more, be it iteration and release cycle, by reducing your cycle time and make
big steps in quality and reduced timelines.

And finally – jump! Jumping are the big gains that LIFT doesn’t even try to
cover in our small, repeatable, consistent step-based approach. An example of

Chapter 8 | Manage

125

jumping is replacing architecture A with architecture B. For example, moving
a system with database level integrations to a service-based architecture
is a jump.

Why? Because we want our professional teams to move faster and with more
confidence. Telling a team that it’s OK for them to “crawl” at any stage of
software construction is insane. If the team has no idea how to build and test
software (crawling), you are toast. Don’t even bother.

The principle is to build a better you, that makes the team better and then set
expectations to change move quickly for everyone else.

 ■ Software Is Built by Professionals

Your teams are professionals. Not family or children. Treating them like children will get you the

same results as having children. Therefore crawl, walk, run is not the model LIFT uses.

 Your Stories Are Currency
Use your experiences to tell experiential stories which demonstrate the
principles and practices for the LIFT evolutions. Everyone has stories in the
industry of what did and didn’t work. Tell these stories. The best speakers in
the world tell stories. The best writers in the world tell stories.

When you want to move teams towards peak excellence, step by step, moving
towards jumping, tell stories so they are motivated and can visualize change.
When people start to visualize, they are becoming active participants.

 Everything Is an Action Plan
Show me an object which is completely static, and I’ll show you a false
dichotomy. Everything on this earth and universe is going through constant
transition – only the rate of change differs.

If you can see an object, you can try to change it – but maybe fail at the
attempt. However, when you can measure this object first, you’ll succeed. The
evolutions and activities are all improvable through purposeful action. To
create discrete, tangible, action, it requires a small plan. Not a capital “P” plan,
like the first evolution – just a little action plan to kick it off. Everything we
change requires at least a little plan, and we call these Action Plans.

Why? Because it’s more liking calling a play in sports than planning a winning
game strategy. There is more to come on this.

Patterns of Software Construction

126

 Activities
All the following activities are things to do. Even at the manage phase, our
principles, thoughts, and retrospectives lead to next actions. What is the
problem, why is it a problem, and what is an action to alleviate the problem?

 Plan Short and Think Long
Don’t let that round of high fives lull you into thinking all is well and good in
the world of shipping software. It’s not and it never is. There is always a wolf
circling your campfire – and it’s made up of a hundred little decisions that can
throw your entire equilibrium off.

Imagine circus performers spinning plates on the end of long skinny poles. If
you’ve never seen this, it’s quite awesome to watch. Now, they don’t just spin
the plates onto the end of a skinny pole with their hands and then wait for
momentum to slow down and fall off.

Why not? Because no one pays to see that. The plate would fall of in about,
hmm, seven seconds. They twirl these long poles in such a way that it balances
the plates on the ends of them – and they never let the momentum cease.
For, as soon as an object loses the minimum velocity to maintain motion what
happens? It comes crashing down.

If a bird stops flapping its wings and it runs out of lift under its wings…it
crashes. You get it now.

If you let momentum stop, velocity reduces precipitously, and the system will
break down. To avoid this, take on an Improvement Challenge after each
significant release using the document in Figure 8-2.

Chapter 8 | Manage

127

Figure 8-2. Use the Improvement Challenge worksheet after every completion evolution

The Improvement Challenge is simple to conceptualize – look back across the
last five evolutions, pick an evolution and then choose an activity inside that
evolution which was challenging. In your first couple go-arounds, this will be
easy to spot. It’s only when you’re maturing that the improvement areas
require some searching. Using a preset document template to facilitate the
improvement challenge simplifies things and brings team members onboard
quickly because of its visual nature.

Here are a few ways to use the Improvement Challenge document:

 1. As the leader, you can choose the challenge and new
target yourself. Then let the team know.

 2. Distribute the document to each team member and have
them fill it out and review the submissions as a group.

 3. Set up a short (like 20 minutes!) workshop with the team
and choose the challenge together.

Or make up a different flavor. Just because we list vanilla, chocolate, and
strawberry doesn’t mean you can’t choose mint.

Patterns of Software Construction

128

Passing mile marker five doesn’t mean you finished the marathon. Don’t slow down. Don’t stop.

 You Shipped. Are You Winning?
Remember, you are at the management evolution – so everything here is
about looking backwards to inform decision moving forward. At this point, do
you feel satisfied? You shipped. Are you winning?

Sometimes these are coupled and sometimes shipping and winning feel miles
apart. Why? Because with being new at the LIFT Engineering System means
the chaos isn’t all shed off yet. LIFT is a system, and it takes time.

 Win with Metrics That Matter
There are a host of metrics to choose from that will tell you if you are winning.
After all, winning is all in the eye of the beholder – anyone can ship. Teams
ship junk all the time, year after year. It doesn’t matter because you aren’t
committed to that mediocrity. Most practitioners won’t ever pick up a book
on software at all. You, on the other hand, have read this book and are ready
to keep going. Tables 8-1 and 8-2 list several metrics to choose from which
become your internal Key Performance Indicators (KPI).

Table 8-1. Metrics that matter overall

Burn Downs Cycle Time Escaped Defects
Incidents Availability Support Emails

From these brief, two tables, it’s clear there are plenty of available metrics
available to measure and move into your own internal scoreboard as KPIs.

Table 8-3 has even more, this time focused completely on the code base.

Table 8-3. Metrics that matter in the casebase

Test Coverage Code Complexity Tech Debt
Code Smells Unit Test Failures # Builds

Table 8-2. Metrics that matter behavioral

Commits Per Day Coding Days Pull Requests Wait Time

Chapter 8 | Manage

129

 Score Yourself
Here is how to use metrics to represent your KPIs and generate your
scorecard:

 1. Choose five metrics from the preceding lists as your KPIs.

 2. Identify how to measure each KPI and ensure it won’t
take excessive effort to gather (delegate collection).

 3. Set up a monthly schedule to gather the KPIs into a
central location (just use a spreadsheet). This is your
scorecard.

 4. Review the scorecard monthly with other engineering
leaders (developers, managers, ops, etc.).

That’s it. Gathering and scoring KPIs isn’t difficult once you’ve chosen some
measurements and set up the process. This scorecard tells if you if you are
winning beyond just shipping. This is how you will construct software and ship
with high quality, consistently, inside the LIFT system.

 ■ Make Sure You Can Measure It First

Choose the metrics that you can measure. For instance, don’t choose code complexity unless

you have a tool to measure it. Otherwise, the team will spin cycles messing around with plugins,

open-source tools, and talking to tool vendors. Having good tools is important, but spin that work

up separately, not as a development cycle.

 Flatten the Ops Curve

Danger Will Robinson.

—The Robot, Lost in Space

We can measure system complexity through effort, number of components,
or dollars spent. All three of these can meaningfully represent the concept of
system complexity. We will measure this on the y-axis in Figure 8-3. The
x-axis represents time.

The danger comes when the rate of operational complexity of a system scales
linearly with the development complexity of the same system. This relationship
doesn’t need to be inverse, that would be impossible in modern systems, but
it should not scale at the same pace. See Figure 8-3.

Patterns of Software Construction

130

Figure 8-3. Flatten the ops curve

The black line (1) shows the complexity of the development effort over time.
It will go up. You cannot stop this – any system where code and functionality
are actively added or changed will have its overall complexity increase. Don’t
even try to bend this rule – it’s like gravity.

Code is complex, and it grows. Why? Think about writing the algorithms for
an investment application, which is the “domain” in Figure 8-4. These
algorithms are created in code to reflect a mathematical methodology and set
of calculations created by experts – the domain complex. Now, let’s say we
must model a one-year horizon and then a two-year horizon next month.
Not a big deal, right? OK, now model a three-year investment horizon,
including variables like income at retirement, retirement age, spousal income,
number of dependents, and held-away assets. Yes, now we are playing with
fire, and this code will be full of conditional statements, which is where
software complexity originates. “If this, then that” is a powerful construct
that holds the power of success or failure on every CPU clock cycle.

Chapter 8 | Manage

131

Figure 8-4. The domain is where complexity belongs

The red line (2) in Figure 8-3 highlights how operational complexity is
increasing as development complexity increases. At first, this may sound
logical. You may think:

More Code and APIs = More Operational Complexity

And, up to a certain point, that statement is true. But there should be a
leveling out point where operations can scale without complexity. This is
because adding 10K lines of code doesn’t mean adding a new, different type of
application server. Or, better yet, adding five new APIs as deployable services
doesn’t mean adding five new containers with different sets of configurations.

The operational footprint of a given system should strive for as much
homogenous behavior and activity as possible.

For instance, sticking with APIs, when the deployment target is an Amazon
Web Service Lambda Function behind and AWS API Gateway, the second API
should be the same setup as the first. As well as the third, fourth, fifth, etc.

So, that is the first case.

The second case is when the operational team doesn’t have control over their
environment. Let’s use an example with Kubernetes (pick your tech please for
this analogy), and each deployment causes excessive scripting, configuration,
and networking changes. This problem is more in the inability to operate the
environment consistently versus however complex the code is. The deployable
into an operational environment is some binary. The infrastructure doesn’t
know what’s in the binary.

Patterns of Software Construction

132

Figure 8-4 models a system in a basic onion architecture. Everything
surrounding the nucleus of domain methodology is just technical noise.
Customers are buying the domain first and the delivery of the functionality
second. They aren’t buying the operations at all – it’s expense.

The threat of operational complexity is real. Many legacy systems suffer more
from operational complexity than software complexity. Before you call this
oxymoron, consider the rapid pace a developer could, if he or she chooses,
refactor 1000 lines of code. Now, what about the rate of change to replace an
old router, load balancer, three versions of tomcat, and CentOS in a production
environment?

Yes, your assumption is correct. The operational complexity ends up being
more expensive than the software complexity over time. On top of that,
operational complexity reduces the rate of change to the software itself!

Summary: don’t let operational complexity grow, flatten the curve immediately
in the Manage evolution.

 Shop at the Hat Store
After five evolutions, you have driven ambiguity out of planning, build, test,
releasing, and operating software – but there is still more to eliminate. The
next round of ambiguity is around roles that don’t fit nicely into the
development process.

Ambiguity in people’s roles in a project can cause as much confusion as an
undocumented API.

To solve this, be explicit with squads (small teams) working on projects and
give everyone a role. Not a title. A title comes from HR and is usually tied to
compensation. It’s hard, like stone, and time-consuming to change. This really
comes in handy when you have shared services, common code and operations
spanning cloud and data centers.

Roles are soft. Roles are like hats – you put them on and take them off. LIFT
doesn’t have a prescription on the exact roles as they are closer aligned to
individual team circumstances. Table 8-4 lists some examples.

Chapter 8 | Manage

133

Table 8-4. Roles

Role Name Role Description

Engineering
Service Lead
(ESL)

An ESL leads and owns a shared service or common functionality.
Consider, if three teams work on a web application that has stock
pricing, who should own the pricing service? Assign an ESL.

Test Lead The individual accountable for a given release to ensure all testing is
completed and respected.

Performance
Owner

This role assigns performance as a specialty so that one individual may
oversee, inquire, and inform the overall performance of a system
release.

Squad Lead Small teams can’t always self-organize. Use a Squad Lead to add
structure to a squad.

 Guided Autonomy
Forcing change doesn’t work long term.

Guided autonomy means leadership supports independent decision-making
within a set of guard rails. The guardrails exist to help teams not drive off the
side of the road, crash, and burn (see Figure 8-5). Yes, the entire LIFT system
provides some safety from chaos – and in this evolution, you reinforce team
members’ ability and need to make decisions.

Figure 8-5. Guardrails prevent catastrophic endings

Patterns of Software Construction

134

It’s important to instill a sense of ownership into team members. To accomplish
this objective in the manage evolution, remind them of the following:

•	 Team members are decisionmakers for decisions that
belong to them. For example, no one is going to tell them
to use bullets in acceptance criteria or write them as
paragraphs.

•	 Projects don’t need approval. They just need to follow
onboarding and LIFT.

•	 The structure that the LIFT system offers is meant for
teams to operate within side of.

 Baby Names for Projects
Did you make it through an entire release cycle with project/release name
“Sprint 85” or something like “HTML Output Upgrade”? If so, that stinks.
Why? Because they are forgettable, boring, and uninspired. Oh, that’s not
enough reason? The names are also ambiguous.

Choose project names that the team won’t mind saying (ever heard of fun,
taskmaster?) and give the project some importance. So much of software
development is rote and small in the scheme of things, so make the process
more engaging by using words.

Examples:

•	 Project Three-Color Notebook

•	 Aardvark

•	 Oswald

•	 Project Zodiac

Some teams really like naming schemes and I’ve recently seen the schemes of:
Norse Gods (think Thor’s family) and videogames. The only way to go wrong
here is to not pick names.

 Tell a Story
Who doesn’t like a story? The whole world exists through expression and
story, so moving teams from system cycle to system cycle too requires some
storytelling to keep them going. It’s human nature to quit when you’re winning
until you start winning all the time. Think about someone trying to lose
weight: they lose 3 lbs. and then stop the behaviors that got them there. It’s
self-sabotage. And software teams will look for excuses not to enter another
system cycle because it takes work, and they are just barely winning by getting

Chapter 8 | Manage

135

through the first couple of cycles. Maybe the win was just getting through the
system cycle! Either way, express the pain which occurs sans LIFT System
Engineering through story.

To help, I’ll share a story. What follows is a true story with the names changed.

Several years ago, I led a development team focused on an extensive web application.
The application was a public-facing website that made money off advertising and
paid memberships. There was also a free version of the site with the usual paywalls,
like any news/content site today. I took over this team moving from another team at
the same firm. As soon as I walked into this group, multiple people told me: “please
don’t change the upgrade work the dev team is doing to the application from version
4.8 to 5.6. We must finish this upgrade.”

This is not how I wanted to join this team, but we had a short history before, and
there must be a good reason. So, I said, “OK, I’ll be hands off since this is already a
work in progress.”

And that was one of the biggest mistakes of my career.

This team proceeded to deploy into staging environments and fail regressions. They
had long development cycles. The exit criteria from QA were ambiguous. Roles were
unclear. Product management already created a fixed data for this release – and
they missed the date once before.

There wasn’t one solid piece of evidence that this release would work ultimately,
except that most functionality eventually passed QA. And I let it slide. I let it slide. I
caved in to the pressure.

The team planned the release for a Thursday afternoon, starting around 4.30 PM,
allowing traffic to trickle out allowing plenty of time for issue handling. They had
DevOps, developers, product managers, and other stakeholders set up in a large
war room environment, complete with six considerable screens in the front to toggle
multiple laptops.

Six machines handled all the production load, and the team decided to take three
machines out of rotation and deploy to those three, then swap them back in for the
other three – all quite normal, until it wasn’t.

With three machines back in production, the only three running the latest code with
the upgrade to version 5.6, the worst thing happened on the big screen: we watched
the nodes slowly maximize all CPU, then turn yellow, red, and then marked as dead.
And the synthetic and manual testing proved out the same story.

OK, reboot those machines! They came back up, and as a trickle of traffic came into
them, the same thing happened, yellow, red, and dead.

Well, there must be something wrong with these three. No problem, upgrade the
other three and put those in production. Maybe it’s a loaded thing – thinking that
the small user load overwhelmed the new code. So, now all six machines are back
in, all upgraded with the latest code, and slowly, yellow, red, and dead!

Patterns of Software Construction

136

QA, what is going on?

“We don’t know.”

Developers, what is going on? “We don’t know.”

Ops, can you check the logs?

“We don’t see anything.”

At this point, I’ve told them to roll back. And the team does…and everything works.
Therefore, it must have been bad circumstances or maybe a hardware glitch or a
bad deployment. So, we repeat the deployment – three out, three in – and the same
results…yellow, red, dead.

OMG.

The CEO walks in. Why?

Because the business head mentioned to him that this big release was going down,
he came in to say congratulations to the utter dismay of the team, which included
almost everyone who wrote code, tested, or project managed this significant upgrade
effort. Did I mention they worked on this big release for five months?

We finally decide to roll back one more time, test, verify it’s working as it was, and
call it a night at 9 PM. And it’s snowing. And life sucks.

I tell one of the senior engineers and the senior DevOps engineer to figure this out
tomorrow.

The next day they figured it out. How? The developers added heavy logging
statements around any server-side code that looked even remotely interesting.

Here was the deal: one each page load the user token for the user (free, paid, etc.)
runs through an encryption library. Encryption is CPU expensive. Token encryption
wasn’t happening once a load, but instead, it was traversing a tree of components
and running anywhere from 1-50 times per individual user page load. This meant, if
ten users hit the site at once, around 500 encryption routines were running. Five
hundred concurrent CPU-bound encryption operations were more than enough to
max out the CPU and trigger the app server’s runtime engine to shut down. And the
bigger problem was this: the site handled 50 concurrent users with thousands of
active sessions concurrently.

So, what is the lesson here?

First, do not ignore things that feel wrong. Listen to your gut more. Second, plan. Third,
test. Fourth, log. Fifth, don’t release when you know the software is not ready. If we
had LIFT then, a prescriptive, pragmatic milestone-based approach using best
practices at every level as opposed to ad-hoc faux agile processes that release would
have been a success.

And these are the types of war stories to tell. The pain is the story. The pain
drives team members to adopt practices that work. The pain is the selling point.

Chapter 8 | Manage

137

 People
People power teams.

No people = No teams

We don’t have a lot of assets as teams building software. What we have is our
intellectual property (IP). IP comes from people. People make products and
companies succeed or fail coupled with leadership support and vision.

I recently met someone who worked at an insurance company for 40 years.
He’s not retired yet, even though he was asked to take their separation
package. Now he’s consulting.

40 years.

He’s a nice guy, but not someone you could spend a lot of time with. Why?
He thinks his years of experience in one firm constitute varied experiences
and attempts to speak into problems he knows nothing about. It’s like a
retired high school football coach telling you how to train for a triathlon
because he used to have his team run sprints. He doesn’t know anything
about triathlons. You can’t even listen to him because it comes from a place
of ignorance.

 Development
Then there is people development – the care, feeding, and growth of team
members. Helping someone grow their career is important – we wouldn’t be
here without it ourselves. Watching someone with potential grow from a
mid-level to senior engineer is satisfying and important work.

Don’t bother developing no/low potential individuals. Think about it. If you
have two people, professionals being paid a salary, and one has potential and
the other is someone team members don’t trust and has a bad attitude, well,
which are you going to invest your time and the firm’s funds into developing?
Be honest. You know your answer. Save your money, the firm’s funds are not
for charity work.

 S-Curves and People
S-curves are the common shape formed by projects when mathematically
graphed.

The beginning, flat, left portion of the S denotes the introduction of a project
and the team starting to form. Then the initial rise in output and cost (growth)
is the middle part of the S with the max growth point named the point of
inflection. And finally, the top part of the S is the plateau of output and

Patterns of Software Construction

138

productivity for the project. The curve of the S will eventually decline as
entropy of a team weighs in and it’s then required to start up a new project,
to drive further growth.

Not having the right people in the right seats causes the initial flat portion of
the S to elongate, as in Figure 8-6, which then means the project costs more
money, or delivers fewer results, because it hits the first upward slope later
than desired.

The following are a couple examples of right seat, wrong person:

Right seat: An engineering leader over the backend systems.

Wrong person: They are not bought into the vision, are monoculture, and
inflexible.

Right seat: Principal Engineer

Wrong person: Inflexible, not willing to adapt and has their own agenda.

And here is an example of right seat, right person.

Right seat: Engineering Manager

Right person: They are aligned with the product vision, setting short and
mid-term goals, and appreciate diverse views.

Chapter 8 | Manage

139

Figure 8-6 shows three s-curves. The first curve is a typical, normal project
with the buildup, grow, and plateau scenario. The second curve from the top
is the same as the first but suggests a time elongation scenario. And the third,
bottommost s-curve displays the results when the project doesn’t ramp up
and grow because of the curve above it.

When the s-curve goes flat too long in the buildup, we lose both time and
money. The loss of time is not recoverable. Time is finite. We miss markets,
opportunities, and momentum to make a big rise in output.

The little decisions, the little battles, the “it’s not a big deal if Karren is bought
into the vision” all have consequences. These all contribute to flattening the
s-curve and increase the risk of failure.

What happens if every project is extended by weeks/months simply because
of miscommunication and because we have the wrong person in the seat?
What if we have the wrong seat to begin with?

Figure 8-6. Using s-curves for projects

Patterns of Software Construction

140

What happens is the middle part of the project flattens out and we do not
want that. We need the progress gradually moving up, not taking a layover for
a month or more.

Yet, this is exactly what happens when the wrong person is in the wrong seat.
Imagine if every project, went over by five weeks.

10 projects x 5 weeks = 50 weeks

Losing 50 weeks in a year is non-trivial. How many weeks in a year? 52. So we
lose about a year.

Get the right people. In the right seats. Aligned towards one vision.

Even if you think we have the right person. And you feel like it’s the right seat.
If they are not 100% aligned to the vision, it won’t work. People not aligned
to the vision are not really on the team and can’t be part of the company.

Always be willing to embrace ignorance because that is the only way to
expand your body of knowledge and body of work. It’s the only way to
expand your mind.

—David Goggins

 Activities Summary
The manage evolution provides time for reflection on the last system cycle,
executing improvement challenges:

•	 Fill out and use the Improvement Challenge document
after system-cycle.

•	 Spend time to determine if what you are shipping is
of value.

•	 Review and create the correct hat-based roles for your
teams and projects.

•	 Give your projects a name. Things are real when they
are named.

•	 Use the Manage evolution to tell stories and create new
stories. Stories bring people together.

•	 Actively watch for elongated s-curves. Managed the slope
of s-curves by putting the right people, in the right seats.

Chapter 8 | Manage

© Stephen Rylander 2022
S. Rylander, Patterns of Software Construction,
https://doi.org/10.1007/978-1-4842-7936-6_9

C H A P T E R

9

Summary
Stay the Course

The patterns of software construction in this book are simple, but not easy
to implement. Therefore, the entire set of patterns are rolled into a progressive,
step-by-step, system.

It will serve you well to remember that processes on their own are like trees.
The system is made of those processes and is therefore the forest. Steering
software projects from beginning to end requires us to look at the forest but
still identify the types of trees living there.

Because software projects are rarely snowflakes, LIFT Engineering is both
helpful and necessary.

LIFT can and will help you succeed consistently if you use the system and
make it yours. Software projects are more similar than different and these
problems are not going away. Projects follow the same cadence this system is
built around, like Figure 9-1.

https://doi.org/10.1007/978-1-4842-7936-6_9#DOI

142

Figure 9-1. LIFT Engineering Final View

At the end of the day, your teams and products get better through repetition.
Repetition is a set of activities. Sets of activities are processes and sets of
processes are a system. Tie all this together with planning, some discipline,
iterative development, cohesive testing, visible roles, clear operational
procedures, commitment to adapt and you will start winning more than you
lose. Do this enough, and you’ll win all the time.

Chapter 9 | Summary

I

© Stephen Rylander 2022
S. Rylander, Patterns of Software Construction,
https://doi.org/10.1007/978-1-4842-7936-6

Index
A
Acceptance Criteria (AC), 23, 50, 53,

55, 56, 58

Anti-corruption layer, 41–43, 51

Application Performance Management (APM)
tool, 110, 111

B
Big Rocks, 21, 22, 24, 26

Build evolution
agile, 28
eliminate waste

beliefs, 48, 49
deploy, 51
patterns, 50

non-functional areas
debugging software, 39
defensive programming, 35–37
definition of done, 46, 47
logging statements, 37, 38
small functions, 40
performance, 44, 45

non-functional requirements pay, bills, 34
software, 33, 34
sprint success, 28–31

C
Continuous integration (CI), 46, 51

CPU clock cycle, 130

Craftsmanship, 2

D
Definition of Done (DoD), 46, 51, 90, 96

Domain Driven Design (DDD), 41, 43

E, F
Exception handling, 35, 36, 38

G, H
Gantt charts, 23

Globally unique identifiers (GUIDs), 42

Guard statements, 35, 36

I, J
Ignition document

change list, 84, 85
definition, 83
dependencies, 86
release details, 84
release script, 87
release summary, 83
risks/mitigation, 87
roles, 85, 86
rollback plan, 88
summary, 88

Improvement challenge, 126, 127

Intellectual property (IP), 137

https://doi.org/10.1007/978-1-4842-7936-6#DOI

144

K
Key Performance Indicators (KPI), 128

L
LIFT

agile product development, 2
architecture, 11, 12
charter, 10, 11
continuous improvement/organization/

discipline, 13
craftsman works, 2, 3
definition, 1, 13
engineering, 141
engineering teams, 3
evolution, 5, 7, 12
not a process, 1
objective measurements, 4
repetitions, 7, 8, 142
system, 2
WMT, 10

Loosely coupled software components, 40

M, N
Manage evolution

activities
ambiguity, 132
baby name projects, 134
guided autonomy, 133
IP, people, 137
measure system complexity, 129–132
ownership, 134
plan, 126, 127
S-curves/people, 137–140
storytelling, 134–136
winning feel, 128, 129

definition, 121
improvement challenges, 140
lift engineering, 122
principles, 124, 125
problems/possibilities, 123, 124
work, 122

O
Operate

activities
manage change, 118, 119
observability/monitoring, 107, 108

operational tooling, 109–111
problems, 112–115
service levels, 116, 117
SOPs, 104–106

principles, 102–104
problem/possibility, 100, 101
system, 99

P, Q
Plan evolution

agile term, 22
big rocks, 21, 22, 26
development strategy, 21
Gantt chart, 23, 24
map it out, 19, 20
portfolio of projects, 17
target, 18

R
Release

activities, ignition, 83
automated tests, 80
checklist, 89, 90, 97
customers, 77
DoD, 90, 91
principles, 80, 81, 96
problem/possibility, 78, 79
production validation, 94–96
script, 92, 93
system, 81–83

S
Standard Operating Procedures (SOPs), 104,

105, 119

T, U, V
Test evolution

activities
AC, 58
API/backend testing, 69
automated, 68
build, 58
environment entry, 59
execution, 68
exit criteria, 60
manual, 70
preparation, 60

Index

145

realtime reviews, 71
risk analysis, 67
SOI, 60–62
test case preparation, 63, 64, 66
user interface testing, 68, 69

customers, 53
performance, 74
possibility, 54
principles

AC, 56
QA environment, 56
set/enforce exit criteria, 56

start testing, 56
test cases, 55

problems/possibilities, 54
QA, 54, 55
raw data set, 72
system, 57
value finding, 74

W, X, Y, Z
Work management tool (WMT), 10, 13,

18, 23, 84

Index

	Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Patterns
	Not a Process
	System
	The Problem
	Craftsmanship Doesn’t Help

	Reality
	The Solution
	Rinse and Repeat

	Chapter 2: Getting Started
	Prerequisites for Lowest Friction
	Or Not

	Must Haves
	Charter

	Architecture
	Mindset to Bring
	Definitions
	System Evolutions

	Chapter 3: Plan
	Target
	Map It Out
	Development Strategy
	Big Rocks
	Write the Stories
	Build the Sequence
	Summary
	Activities Summary

	Chapter 4: Build
	Anatomy of a Sprint
	Week 1
	Week 2
	Week 3

	Most Software...
	Non-Functional Requirements Pay the Bills
	Non-Functional Areas to Completely Own
	Defensive Programming
	Aggressive Logging
	Debuggable Software
	Small Functions

	Performance
	What Does Early Optimization Look Like in LIFT?

	Your Definition of Done
	Write Things Down and Document As You Go

	Eliminate Waste
	Beliefs
	Deploy

	Activities Summary

	Chapter 5: Test
	The Problem and Possibility
	What do you really want from QA and testing?

	Possibility
	Principles
	Test Cases
	Acceptance Criteria
	Keep the QA Environment Clean
	Set and Enforce Exit Criteria
	Start Testing Before You Start Testing

	The Testing System
	Activities
	Prerequisites
	Acceptance Criteria
	A Build
	Environment Entry
	Exit Criteria
	Preparation
	Scope of Impact (SOI)
	Test Case Preparation
	Risk Analysis
	Execution
	Automated
	User Interface Testing
	API and Backend Testing
	Manual
	Realtime Reviews

	Conclude
	Test Summary and Reporting
	Performance

	Activities Summary

	Chapter 6: Release
	The Problem and Possibility
	Problem #1 – The Act of Releasing Software Is Chaotic
	Problem #2 – You Lack a System to Predictably Deliver Solid Releases to Customers
	Possibility #1 – You Let Go of OK and Move to Great
	Possibility #2 – Releases Are Non-Events

	Principles
	Write It All Down
	Rely on Automated Tests
	Not Everyone Can Be in Charge

	The Release System
	Activities
	Ignition
	Release Summary
	Release Details
	Change List
	Release Date and Time
	Deployment Items
	Other Release-Related Links

	Roles
	Dependencies
	Risks and Mitigations
	Release Script
	Rollback Plan
	Ignition Summary

	Release Checklist
	Release Definition of Done

	Release Script
	Communication
	Play-by-Play
	Fallback vs. Rollback

	Production Validation
	Logs
	Monitoring and Synthetics
	Automated Tests

	Release Complete

	Activities Summary

	Chapter 7: Operate
	The Problem and Possibility
	Problem #1 – You Have No Idea What Your Software Is Doing
	Problem #2 – There Are No Hooks to Observe Internal Behavior
	Problem #3 – Incidents and Accidents Just Happen with Little to No Consequence
	Possibility #1 – You Know What Your Software Is Doing
	Possibility #2 – When Incidents Happen You Know What to Do
	Possibility #3 – You Live in a World of Specifics

	Principles
	Measure Everything
	Test Everything
	Operating Procedures Drive Change

	Activities
	Standard Operating Procedures
	Create Observability and Monitoring
	Operational Tooling
	Infrastructure
	Logs
	Traffic
	Tracing
	Events
	Dependencies

	Responding to Problems
	Use Your SOP
	Restore Service First
	Respond Only to Synthetic Monitoring Alerts
	Rotations
	Long-Term Fixes and Mitigations
	Example 1 – Reoccurring
	Example 2 – Unpredictable
	Example 3 – Unreproducible

	Service Level Objectives
	Create Performance and Stability Improvements

	Manage Change
	Summary
	Activity Summary

	Chapter 8: Manage
	The Problem and Possibility
	Problem #1 – Now What?
	Problem #2 – People, People, People
	Possibility #1 – It’s Easy to Make Improvements
	Possibility #2 – Skillsets and Mindsets Are Adaptable

	Principles
	Evolution Changes You for the Better
	Walk Then Jump

	Your Stories Are Currency
	Everything Is an Action Plan

	Activities
	Plan Short and Think Long
	You Shipped. Are You Winning?
	Win with Metrics That Matter
	Score Yourself

	Flatten the Ops Curve
	Shop at the Hat Store
	Guided Autonomy
	Baby Names for Projects
	Tell a Story
	People
	Development

	S-Curves and People

	Activities Summary

	Chapter 9: Summary
	Index

